
Measures of Entanglement: Solutions to Exercises

1. Entanglement entropy is not directional
Let |ψ〉 = |A〉 ⊗ |Ā〉 be an eigenstate of a quantum many body system. Let f and f̄
be anti-linear maps defined as:

f : A → Ā

f |A〉 = 〈A|ψ〉

and
f̄ : Ā → A

f̄ |Ā〉 = 〈Ā|ψ〉

Then the reduced density matrices can be defined as

ρA = f̄f and ρĀ = ff̄

thus, they have the same set of non-zero eigenvalues (same degeneracies).

2. Maximization of Shanon’s entropy
Since it is a two spin system and we are tracing out over one of the spins, the dimension
of the density matrix is 2s+ 1× 2s+ 1. There are therefore 2s+ 1 positive eigenvalues
λi with i = 1, . . . , 2s+ 1. The entanglement entropy is then defined as

SA = −
2s+1∑
i=1

λi log λi.

and we want to find the maximum of this quantity subject to the constraint that∑2s+1
i=1 λi = 1. This is a typical optimization problem which we can solve by defining

the function

f(λ1, . . . , λ2s+1) = −
2s+1∑
i=1

λi log λi + µ(
2s+1∑
i=1

λi − 1),

and solving the equations

∂f

∂λi
= 0 for i = 1, . . . , 2s+ 1 and

∂f

∂µ
= 0.

The first 2s+ 1 equations become

− log λi − 1 + µ = 0 for i = 1, . . . , 2s+ 1

that is λi = eµ−1 for every value of i. Inserting this result into the constraint we have
that

2s+1∑
i=1

λi = (2s+ 1)eµ−1 = 1,
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that is

eµ−1 =
1

2s+ 1
= λi for i = 1, . . . , 2s+ 1.

This gives the value anticipated before

SA = log(2s+ 1).

In particular, the Bell state that was shown as an example in the lecture has entangle-
ment entropy log 2 which maximal for any two-spin system with spin 1

2
.

3. Entanglement Entropy of Finite Systems
Consider the configuration below:

The map f(z) = sin πz
L

maps the points ±L/2 into the points ±1. In fact, it maps the
vertical strip on the l.h.s. into the upper half plane and maps its boundaries onto the
real line. This is therefore the map that we need to use. So we expect a formula of the
type

S(`, L) =
c

3
log

(
sin

π`

L

)
+ constants

We would like however, to ensure as well that when L → ∞ we recover the original
result. In order to do this we may express the constants in a more convenient way as:

S(`, L) =
c

3
log

(
L

πε
sin

π`

L

)
.

This result appeared in C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B424 (1994)
443-467 but it is best known in our community from the work of P. Calabrese and J.L.
Cardy, J. Stat. Mech. 0406:P06002 (2004). It is an important formula specially for
numerics as in most cases only finite discrete systems can be simulated on a computer,
so this is the kind of scaling of EE that is most frequently observed in numerics.

4.

5. Branch Point Twist Fields and Multi-Sheeted Riemann Surfaces
The solution to problems 4 and 5 can be found in our paper J.L. Cardy, OC-A and B.
Doyon, J. Stat. Phys. 130 129-168 (2008), in section 2.1. There is a similar derivation
in P. Calabrese and J.L. Cardy, J. Stat. Mech. 0406:P06002 (2004) but the definition
of their field is slightly different and the conformal dimension that they get is scaled
by a factor n.
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6. Entanglement Formulae from CFT Correlators

Entanglement Entropy of one Interval: Let

〈T (0)T †(`)〉 =
1

`4∆T

then

log(ε4∆T 〈T (0)T †(`)〉) = 4∆T log
ε

`
⇒ Sn(`) =

4∆T
1− n

log
ε

`
=

(1 + n)c

6n
log

`

ε

thus, the von Neumann entropy is

S(`) = lim
n→1

(1 + n)c

6n
log

`

ε
=
c

3
log

`

ε
.

Therefore the results for the entropies of one connected interval are a direct consequence
of the structure of two-point functions of primary fields in CFT.

Replica Negativity and Entanglement of two Disconnected Regions in CFT:

Let us now look at the logarithmic negativity and its replica version. Here the starting
point was the two point function

〈T (x1)T †(y1)T †(x2)T (y2)〉

If we were to consider this four-point function directly, then we could use the four-point
function formula given in the exercise. This would give us

En(x1, y1, x2, y2) = log(ε8∆T 〈T (x1)T †(y1)T †(x2)T (y2)〉)

= 4∆T log
|x1 − x2|

ε
+ 4∆T log

|y1 − y2|
ε

− 4∆T
∑
i,j

log
|xi − yj|

ε
+ logF(x)

and for the Rényi entropies of two disconnected regions the relevant four-point function
was

〈T (x1)T †(y1)T (x2)T †(y2)〉

we get the same but with a different function F̃(x) as the correlator is different

Sn(x1, x2, x3, x4) =
4∆T
1− n

log
|x1 − x2|

ε
+

4∆T
1− n

log
|y1 − y2|

ε
− 4∆T

1− n
∑
i,j

log
|xi − yj|

ε
+

log F̃(x)

1− n
.
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If F̃(x) = 1 and c = 1
2

and we take the limit n → 1 we get the formula for the
entanglement entropy of disconnected regions in a free fermion theory

S(x1, x2, x3, x4) =
c

3

∑
i,j

log
|xi − yj|

ε
− c

3
log
|x1 − x2|

ε
− c

3
log
|y1 − y2|

ε
.

found in P. Calabrese and J.L. Cardy, J. Stat. Mech. 0406:P06002 (2004). For free
fermions, this result generalizes in an obvious way to multiple disconnected regions
(just have to increase the range of indices i, j). In the original paper it was thought
the result held more widely in CFT. It was later shown by Furukawa, Pasquier and
Shiraishi, Phys. Rev. Lett. 102, 170602 (2009) that for generic CFT this behaviour
is corrected by the function F̃(x) in a non-negligible way.

In a series of papers (starting 2010) Calabrese, Cardy and Tonni (and later also with
other collaborators) then studied these two four-point functions in great detail for the
compactified free boson. They chose this theory mainly because the orbifold parti-
tion functions had been computed using vertex operators in L. Dixon, D. Friedan, E.
Martinec and S. Shenker, Nucl. Phys. B282, (1987) 13-73.

Replica Negativity of Adjacent Regions in CFT

This is the most interesting case where one can get non-trivial results. It corresponds
to the limit when the distance between regions A and B goes to zero. From the four-
point function viewpoint, this amounts to bringing the two fields T † very close to each
other. The resulting three-point function was studied for the first time in the papers
P. Calabrese, J.L. Cardy and E. Tonni, Phys. Rev. Lett. 109, 130502 (2012); J. Stat.
Mech. (2013) P02008. The discussion below follows exactly from the beautiful ideas
presented in those papers.

Let us examine the OPE of two branch point twist fields T

T (x1)T (x2) = COT T |x1 − x2|2∆O−4∆TO + · · ·

where O is the leading field in the expansion. The expansion must respect the cyclic
permutation symmetry which means that the field O must also be a branch point twist
field implementing the double action of T . This double action amounts to going from
copy j to copy j + 2 so it is natural to call this field O = T 2. A key idea from the
papers above is the realization that the field T 2 is markedly different depending on
whether n is even or odd. It is easy to reason that if n is odd, repeated action of T 2

starting from a given copy would allow us to visit every other copy. In other words,
for n odd, the field T 2 is exactly like the field T up to relabelling of the copies. In
particular then ∆T 2 = ∆T for nodd. In this case, the replica negativity becomes just

Eno(`1, `2) = log(ε6∆T 〈T (−`1)T †(0)T (`2)〉)
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and using the formula for three-point functions this gives

Eno(`1, `2) = log

(
ε6∆T CT T †T

(`1`2(`1 + `2))2∆T

)
= 2∆T

(
log

`1

ε
+ log

`2

ε
+ log

`1 + `2

ε

)
+log CT T †T .

Except for the fusion constant CT T †T , the rest of the formula tends to zero when
no → 1.

The more interesting and meaningful result is obtained when n is even and indeed it is
from n even that we can then obtain the logarithmic negativity. For n even the field T 2

is also associated with cyclic permutation symmetry. However, in this case the copies
decouple into two independent sets. If we start at an even copy T 2 will only allow us
to visit other even copies and similarly if start with an odd one. Thus, for n even we
can formally write that

T 2 = Tne
2
⊗ Tne

2
,

where Tne
2

is a standard branch point twist field in a ne

2
copy theory. Therefore its

conformal dimension is ∆T 2 = c
12

(
ne

2
− 2

ne

)
. This means that for n even, the replica

logarithmic negativity of CFT can be written as

Ene(`1, `2) = log(ε4∆T −2∆T 2 〈T (−`1)(T †)2(0)T (`2)〉)

and from the three-point function formula it follows that

Ene(`1, `2) = log

(
ε4∆T +2∆T 2CT (T †)2T (`1`2)−2∆T 2

(`1 + `2)4∆T −2∆T 2

)

= −2∆T 2 log
`1`2

ε(`1 + `2)
− 4∆T log

`1 + `2

ε
+ log CT (T †)2T ,

and therefore the logarithmic negativity of adjacent regions is

lim
ne→1
Ene(`1, `2) =

c

4
log

`1`2

ε(`1 + `2)
+ E⊥ ,

where
E⊥ = lim

ne→1
CT (T †)2T .
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