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1. The result

We will end these lectures on QFT methods and Measures
of Entanglement by showing an explicit computation which
shown the intricacies of the twist field approach and the
analytic continuation in n.
We will prove that the EE of a single interval of length ` > ξ
has the following universal behaviour in massive QFT:

Universal Exponential Corrections to Saturation

S(`)− lim
`→∞

S(`) = −1

8

N∑
α=1

K0(2mα`) +O(e−3m1`)

That is, there are exponentially decaying corrections to sat-
uration which are led by the mass of the lightest particle in
the spectrum m1.
This results was shown first in Cardy, Castro-Alvaredo, Doyon
(2008) and the proven by Doyon to hold for any 1+1 dimen-
sional QFT (even non-integrable).
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2. Starting Point

Recall that

S(`) = − lim
n→1

∂h(n)

∂n
with h(n) = ε4∆T 〈T (0)T̃ (`)〉

So the basic object we need to compute is the two-point
function:

〈T (0)T̃ (`)〉 = 〈T 〉2 +
∑
µ

∫ ∞
−∞

dθ

2π
(F
T |µ
1 (θ))∗(F

T̃ |µ
1 (θ))e−`mµ cosh θ

+
1

2

∑
µ1µ2

∫ ∞
−∞

dθ1

2π

∫ ∞
−∞

dθ2

2π
(F
T |µ1µ2
2 (θ1, θ2))∗(F

T̃ |µ1µ2
2 (θ1, θ2))e−`mµ1

cosh θ1−`mµ2
cosh θ2

+ · · ·
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3. Some Simplifications

We have just seen the most general expansion up to two-
particle form factors.

Let us consider now a simple case: a theory with a single
particle in the spectrum.

In that case we can label particles just by the copy number
j = 1 . . . n.

We also know the twist field is a spinless field: one-particle
form factors are rapidity-independent and they are all equal

because all copies are identical: F
T |µ
1 (θ) := F1(n).

Two-particle form factors only depend on rapidity differ-

ences: F
T |µ1µ2
2 (θ1, θ2) := F ij2 (θ, n) and F

T̃ |µ1µ2
2 (θ1, θ2) :=

F̃ ij2 (θ, n) with θ = θ1 − θ2.

Finally, recall that all form factors are zero at n = 1.
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4. First Term: Saturation

The first term in the expansion of the two-point function is
the expectation value of twist fields. This is a function of n
which is only known for free theories.

This term characterizes saturation of EE for large sub-systems:

lim
`→∞

S(`) = − lim
n→1

∂

∂n

(
ε4∆T 〈T 〉2

)
= − c

3
log ε− 2 lim

n→1

∂〈T 〉
∂n

= − c
3

log(εm)− U with 〈T 〉 = m2∆T Un

and U = 2 limn→1
∂Un
∂n . Note that U is a universal constant

in the sense that it does not depend on the cut-off ε, hence
can be uniquely determined for each QFT.
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5. Second Term: One-Particle Form Factor

For a theory with a single particle the one-particle form fac-
tor contribution can be written simply as

n |F1(n)|2
∫ ∞
−∞

dθ

2π
e−`m cosh θ =

n

π
|F1(n)|2K0(m`).

This provides the leading correction to saturation of the
two-point function, however it vanishes under differentiation
w.r.t. n and limit n→ 1.

This is because F1(1) = F1(1)∗ = 0.

This means that the one-particle form factors (if they are
non-vanishing) will provide the leading correction to the
Rényi entropies but no contribution to the EE.
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6. Third Term: Two-Particle Form Factor

For a theory with a single particle two-particle form factor
sum can be simplified as:

n∑
i=1

n∑
j=1

(F ij2 (θ, n))∗(F̃ ij2 (θ, n)) = n

n∑
j=1

(F 1j
2 (θ, n))∗(F̃ 1j

2 (θ, n))

because all copies are identical. Using the identities we saw
in the previous lecture:

n
n∑
j=1

(F 1j
2 (θ, n))∗(F̃ 1j

2 (θ, n)) = n
∣∣F 11

2 (θ, n)
∣∣2+n

n∑
j=2

∣∣F 11
2 (−θ + 2πi(j − 1), n)

∣∣2

= n
∣∣F 11

2 (θ, n)
∣∣2 + n

n−1∑
j=1

∣∣F 11
2 (−θ + 2πij, n)

∣∣2

The derivative at n = 1 of the term
∣∣F 11

2 (θ, n)
∣∣2 will be zero

because F 11
2 (θ, 1) = F 11

2 (θ, 1)∗ = 0. So it will contribute to
the Rényi entropies but not to the EE.
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7. In Summary: Leading Correction to EE

In summary, we need to compute

−
1

4
lim
n→1

∂

∂n

∫ ∞
−∞

dθ

2π

∫ ∞
−∞

dβ

2π
n

n−1∑
j=1

∣∣F 11
2 (−θ + 2πij, n)

∣∣2 e−2m` cosh θ
2
cosh β

2


with θ = θ1 − θ2 and β = θ1 + θ2.

The integral in β can be carried out giving a Bessel function.
So, we end up with:

− lim
n→1

∂

∂n

∫ ∞
−∞

dθ

(2π)2
n

n−1∑
j=1

∣∣F 11
2 (−θ + 2πij, n)

∣∣2K0(2m` cosh
θ

2
)


In order to take the derivative, we need to somehow get rid
of the sum up to n− 1.

A well-known way of doing this is to use the cotangent trick.
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8.Cotangent Trick I

The idea is that the sum may be replaced by a contour in-
tegral

1

2πi

∮
dzπ cot(πz)s(z, θ, n)

with s(z, θ, n) =
∣∣F 11

2 (−θ + 2πiz, n)
∣∣2, in such a way that the

sum of the residues of poles of the cotangent enclosed by
contour reproduces the original sum.

Here the red crosses represent the poles of the cotangent at
z = 1, 2, . . . , n− 1 and the blue crosses represent other poles
in the contour due to the kinematic poles of the function
s(z, n) at z = 1

2 ±
θ

2πi and z = n− 1
2 ±

θ
2πi .

We shift iL → iL − ε so as to avoid the pole at z = n. It
includes z = 0 but this does not affect the result.
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9.Cotangent Trick II

Since s(z, θ, n) decays exponentially as Im(z) → ±∞ so we
can show that the contributions to the contour integral of
the horizontal segments vanish.

The contribution of the vertical segments can be written as:

− 1

4πi

∫ ∞
−∞

(S(θ − β)S(θ + β)− 1) coth
β

2
s(β, θ, n)dβ

where β = 2πiz and S(θ) is the S-matrix. Here we used the
property s(z + n, θ, n) = S(θ − 2πiz)S(θ + 2πiz)s(z, θ, n).

Note that this is zero for free theories. Its derivative at n = 1
is zero for similar reasons as before.

Finally we are left with the contributions from the residues
of the kinematic poles. They give:

tanh
θ

2
Im
(
F 11

2 (−2θ + iπ, n)− F 11
2 (−2θ + 2πin− iπ, n)

)
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10. Derivative

From these results, we already have an expression for the
two-particle contribution to the Rényi entropies.

However, our aim is to understand the derivative w.r.t. n of
this function.
We have already argued that the only two-particle contribu-
tion to the derivative comes from:

Im
(
F 11
2 (−2θ + iπ, n)− F 11

2 (−2θ + 2πin− iπ, n)
)

tanh
θ

2

Based on previous observations, it would seem that this
should be zero as F 11(θ, 1) = 0. However, something special
happens to this function as n→ 1 and θ → 0 simultaneously.

This is due to the fact that as n → 1 the two kinematic
poles at iπ and iπ(2n− 1) of the form factors collide giving
a double pole for θ 6= 0.

For θ = 0 however, there are no poles and the function is
simply 1

2 (for all n 6= 1). It is however 0 at n = 1!

Olalla A. Castro-Alvaredo www.thebolognalectures.weebly.com



11. A Picture: Better than 1000 Words

The sum n
∑n−1

j=1

∣∣F 11
2 (−θ + 2πij, n)

∣∣2 for θ = 0 in the Ising
model (blue) and the sinh-Gordon model (red).
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12. Delta Function

Another way to write this is to note that near n = 1 and
θ = 0

Im
(
F 11
2 (−2θ + iπ, n)− F 11

2 (−2θ + 2πin− iπ, n)
)

tanh
θ

2

∼ −
1

2

(
iπ(n− 1)

2(θ + iπ(n− 1))
−

iπ(n− 1)

2(θ − iπ(n− 1))

)
∼
π2(n− 1)

2
δ(θ).

near n = 1 and θ = 0.

Putting this result back into the θ integral and differentiating
w.r.t. n we obtain the two-particle form factor contribution:

−1

8
K0(2m`)

The result is striking for its simplicity. From the derivation
we see that it follows from the pole structure of the FFs,
which is universal.

For this reason the same result can even be found for non-
integrable models.
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