
Form Factor Programme: Exercises

1. Show that if the S-matrix of a diagonal theory has a representation of the form

Sab(θ) = exp

[∫ ∞
0

dt

t
gab(t) sinh

tθ

π

]
,

for some known function gab(t), then the function

fab(θ) = exp

[∫ ∞
0

dt

t

gab(t)

sinh t
sin2

(
it

2

(
1 +

iθ

π

))]
is a minimal solution to the form factor equations, that is it satisfies:

fab(θ) = Sab(θ)fba(−θ) = fab(−θ + 2πi).

You may assume that fab(θ) = fba(θ) (parity invariance).

2. In the Ising model, the stress energy tensor (exceptionally) has only two non-vanishing
form factors given by:

FΘ
0 := 〈0|Θ|0〉 = 2πm2 FΘ

2 (θ1, θ2) := −2πim2 sinh
θ1 − θ2

2
.

Employing these form factors, write down the function c(r) in as simplified a form as
you can. From this formula show analytically that limr→0 c(r) = 1

2
. Plot your function

c(r) and compare it to the scaling function c(R) of the TBA for the same theory. Check
that although both have the same relevant features they are in fact different functions.

3. One way to identify the operator through its form factors is by looking at the short-
distance behaviour of the two-point function. Numerically-speaking it is much easier
to accurately identify the short-distance power-law behaviour of two-point functions by
studying the form factor expansion of the logarithm of the two-point function, rather
than the two-point function itself. In particular we expect that:

log

(
〈0|O(0)O(r)|0〉
〈0|O|0〉2

)
≈ −4∆O log r − 2 log〈0|O|0〉+ · · ·

where 〈0|O|0〉 is the one-point function or vacuum expectation value of the field O.
By definition, this is the zero-particle form factor and all higher particle form factors
are proportional to it. Here we assume that O is self-conjugate so O = O†. Show that
in a theory with a single particle spectrum and a diagonal S-matrix (for simplicity),
the function above may be expanded as

log

(
〈0|O(0)O(r)|0〉
〈0|O|0〉2

)
=
∞∑
k=1

∫ ∞
−∞

dθ1 . . . dθk
k!(2π)k

hk(θ1, . . . , θk)e
−mr

∑k
j=1 cosh θj

1



where the functions hk (usually called cumulants) can be expressed in terms of the
usual form factors. For instance:

h1(θ) = |FO1 (θ)|2, h2(θ1, θ2) = |FO2 (θ1, θ2)|2 − |FO1 (θ1)|2|FO1 (θ2)|2

and so on. This is usually termed the cumulant expansion. By considering the small
mr expansion of the formula above, show that, for a spinless field,

∆O =
1

2

∞∑
k=1

∫ ∞
−∞

dθ2 . . . dθk
k!(2π)k

hk(0, θ2, . . . , θk).

Hint: For spinless fields the form factors and the funtions hk only depend on rapidity
differences. Use this fact to integrate out one rapidity in the cumulant expansion
formula. After integration you should have a Bessel function which you can expand
for small mr. You should then be able to get the formula for ∆O and with a bit more
work you can even get a similar formula for log〈0|O|0〉.

4. The form factors of the operators µ and σ in the Ising model are given by:

F µ
2k(θ1, . . . , θ2k) = ik〈0|µ|0〉

∏
1≤i<j≤2k

tanh
θi − θj

2
,

and

F σ
2k+1(θ1, . . . , θ2k+1) = ik〈0|σ|0〉

∏
1≤i<j≤2k+1

tanh
θi − θj

2
.

All other form factors are zero. Show that under clustering the following properties
hold

lim
λ→∞

F µ
2k(θ1+λ, . . . θp+λ, θp+1, . . . θ2k) ∝

{
F µ
p (θ1, . . . θp)F

µ
2k−p(θp+1, . . . θ2k) for p even

F σ
p (θ1, . . . θp)F

σ
2k−p(θp+1, . . . θ2k) for p odd

and

lim
λ→∞

F σ
2k+1(θ1+λ, . . . θp+λ, θp+1, . . . θ2k+1) ∝

{
F σ
p (θ1, . . . θp)F

µ
2k+1−p(θp+1, . . . θ2k+1) for p odd

F µ
p (θ1, . . . θp)F

σ
2k+1−p(θp+1, . . . θ2k+1) for p even

5. Employ the form factors of question 2 and question 4 and the ∆-sum rule to show that
the field µ of question 4 can indeed be identified with one of the fields in the Ising
model Kac table of conformal dimension 1/16.

6. We have seen in the lecture that it is common to compute FFs by starting with the
ansatz:

Fk(θ1, . . . , θk) = HkQk(x1, . . . , xk)
∏
i<j

Fmin(θi − θj)
xi + xj

,

where xi = eθi and we have written the ansatz for a theory with a single particle type
and have used the fact that the minimal form factor is a function of rapidity differences.
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Consider the sinh-Gordon model at the self-dual point. This is a theory with a single
particle and scattering matrix

S(θ) =
tanh 1

2

(
θ − iπ

2

)
tanh 1

2

(
θ + iπ

2

) .
Using the fact that

Fmin(θ + iπ)Fmin(θ) =
sinh θ

sinh θ + i
,

and taking the factor of local commutatitivity ω = 1, show, by plugging the ansatz
above onto the kinematic residue equation, that the functions Qk and the constants
Hk satisfy

(−1)kQk+2(−x, x, x1, . . . , xk) = xDk(x, x1, . . . , xk)Qk(x1, . . . , xk), Hk+2 =
4Hk

Fmin(iπ)
,

where xi = eθi and

Dk(x, x1, . . . , xk) =

(
k∑
j=0

(−1)j+1 sin
πj

2
xk−jσ

(k)
j

)(
k∑
p=0

(−1)p cos
πp

2
xk−pσ(k)

p

)
.

Recall that the elementary symmetric polynomials are given by the following generating
function

∏k
j=1(x+xj) =

∑k
j=0 x

k−jσ
(k)
j where σ

(k)
j is the elementary symmetric polyno-

mial of order j on k variables. For instance: σ
(3)
1 = x1+x2+x3, σ

(3)
2 = x1x2+x2x3+x1x3

and σ
(3)
3 = x1x2x3. Hint: Write all functions involved in terms of the variables xi.
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