Thermodynamic Bethe Ansatz: Exercises

1. In the lecture it was stated that the TBA equations may be obtained through a combination of the equations that relate the root density and overall density of states with the extremum condition for the free energy per unit length. Do the computation.
Hint: You need to write down the equation $\frac{\delta f\left(\rho(\theta), \rho^{(r)}(\theta)\right)}{\delta \rho^{(r)}(\beta)}=0$. Start by employing the Bethe ansatz equation which relates ρ to $\rho^{(r)}$ to compute $\frac{\delta \rho(\theta)}{\delta \rho^{(r)}(\beta)}$. Note that these are functional derivatives so, for instance, $\frac{\delta \rho^{(r)}(\theta)}{\delta \rho^{(r)}(\beta)}=\delta(\theta-\beta)$.
2. Write down the exact (integral) expressions for the scaling function $c(R)$ of the free Fermion and free Boson theories. Show analytically how the $R \rightarrow 0$ limit indeed gives the values $c=\frac{1}{2}, 1$ as expected. Hint: Expand the L-function in powers of $e^{-\epsilon(\theta)}$.
3. The TBA equations can usually be solved easily by employing a simple numerical recipe. Write a code that solves the TBA equations for the Lee-Yang model. This is an integrable quantum field theory with a single particle spectrum and

$$
S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta+\frac{2 \pi i}{3}\right)}{\tanh \frac{1}{2}\left(\theta-\frac{2 \pi i}{3}\right)} \quad \text { and } \quad \varphi(\theta)=-\frac{4 \sqrt{3} \cosh \theta}{1+2 \cosh 2 \theta} .
$$

$S(0)=-1$ so we assume Fermionic statistics. Use your programme to plot the scaling function $c(R)$ and the L-functions $L(R)$ for various values of R. For small values you should find that the L-functions have a plateau at an irrational value which is exactly the solution of the constant TBA equation. Find this value analytically. The Lee-Yang model may be viewed as an integrable perturbation of the Lee-Yang minimal model of CFT. This is a non-unitary CFT with $c=-\frac{22}{5}$ and $\Delta=-\frac{1}{5}$ so that $c_{\text {eff }}=\frac{2}{5}$. Hint: Explore values of R between 0.001 (UV) and 2 (IR). The numerical approach should be a recursive procedure where in the zero-th iteration $\epsilon^{(0)}(\theta)=m R \cosh \theta$ is the free solution and further solutions are obtained from the TBA equations as $\epsilon^{(k)}(\theta)=m R \cosh \theta-\left(\varphi * L^{(k-1)}\right)(\theta)$ for $k=0,1, \ldots p$ for some maximum value p. This value is usually relatively large (e.g. $p \approx 50$) for small R but very small (e.g. $p \approx 10$) for large R. The correct solution is found when $\epsilon^{(k)}(\theta)$ does not change anymore under iteration.
4. Show that the constant TBA equations for the minimal A_{n} Toda theory with $N_{A B}=$ $\delta_{A B}-2\left(K^{-1}\right)_{A B}$, where K is the Cartan matrix of A_{n}, have solutions

$$
x_{A}=1+e^{-\epsilon_{A}}=\frac{\sin ^{2}\left(\frac{\pi(A+1)}{n+3}\right)}{\sin \frac{\pi A}{n+3} \sin \frac{\pi(A+2)}{n+3}} .
$$

Assume Fermionic statistics for all functions. Check that (at least for some fixed value of n) employing these solutions you obtain the right central charge from Roger's dilogarithm $c=\frac{2 n}{(n+3)}$. Show that the constant TBA equations in terms of new variables $Q_{A}=\prod_{B=1}^{n} x_{A}^{K_{A B}}$ are

$$
Q_{A+1} Q_{A-1}+1=Q_{A}^{2} .
$$

Hint: Use the fact that, for $A_{n}, K_{A B}=2 \delta_{A B}-\delta_{A, B+1}-\delta_{A+1, B}$. Do not show that you get the correct central charge in general but just check a couple of cases numerically (say $n=1$ and $n=2$). The general proof involves using some special properties of Roger's dilogarithm.
5. Show how the $R \rightarrow 0$ limit of the TBA equations combined with the definition of the scaling function $c(R)$ gives rise to the expression of $c_{\text {eff }}$ in terms of Roger's dilogarithm. Assume Fermionic statistics. Hint: It is hard to give hints for this question as the proof somehow only becomes obvious once you know which tricks to use. However, it is a very nice proof because it gives a very good illustration of the sort of tricks you can use to manipulate TBA equations. The key idea is to rewrite the $m R \cosh \theta$ term in both the TBA equation and the formula for $c(R)$ as $m R \cosh \theta=e^{\theta+x}+e^{-\theta+x}$ with $x=\log (m R / 2)$ and then rewrite all formulae in terms of "shifted" variables by defining new functions $L_{-}(\theta):=L(\theta-x)$ and $\epsilon_{-}(\theta)=\epsilon(\theta-x)$. Terms of order $e^{2 x}$ can be neglected in the equations as we are interested in $x \rightarrow-\infty$. Assuming parity invariance $L(\theta)=L(-\theta)$, it is possible to express $c(R)$ as $\frac{6}{\pi^{2}} \int_{x}^{\infty} L_{-}(\theta) e^{\theta}$. The key is then to manipulate this formula by substituting e^{θ} by its expression from the "shifted" TBA equation and from the "shifted" derivative of the TBA equation. Zamolodchikov's original paper gives a hint of the derivation!

