

Lecture 2A: Form Factor Programme for Twist Fields

Olalla A. Castro-Alvaredo

School of Mathematics, Computer Science and Engineering
Department of Mathematics
City, University of London

Galileo Galilei Institute, Arcetri, Florence
8-19 February 2021

1. Preliminary Definitions

- In $1+1 \mathrm{D}$ QFT it is natural to write a k-particle in-state as

$$
\left.\left|\theta_{1}, \ldots, \theta_{k}\right| 0\right\rangle_{\mu_{1} \ldots \mu_{k}} \quad \text { with } \quad \theta_{1}>\cdots>\theta_{k}
$$

where $\left\{\theta_{i}\right\}$ are rapidities in terms of which the energy and momentum of each excitation are $e(\theta)=m \cosh \theta$ and $p(\theta)=m \sinh \theta$. $\mu_{1} \ldots \mu_{k}$ are quantum numbers. $|0\rangle=(\langle 0|)^{\dagger}$ the ground state.

- Let $\mathcal{O}(0)$ be a local field located at the origin of space-time:

k-Particle Form Factor of a Local Field

$$
\left.F_{k}^{\mathcal{O} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right):=\langle 0| \mathcal{O}(0)\left|\theta_{1}, \ldots, \theta_{k}\right| 0\right\rangle_{\mu_{1} \ldots \mu_{k}}
$$

- We will also need the S-matrix. We will look only at the diagonal case:

Two Particle Scattering Matrix

$$
\begin{gathered}
\left.\left|\theta_{1}, \ldots, \theta_{i}, \theta_{i+1}, \ldots \theta_{k}\right| 0\right\rangle_{\mu_{1} \ldots \mu_{i} \mu_{i+1} \ldots \mu_{k}}:= \\
\left.S_{\mu_{i} \mu_{i+1}}\left(\theta_{i}-\theta_{i+1}\right)\left|\theta_{1}, \ldots, \theta_{i+1}, \theta_{i}, \ldots \theta_{k}\right| 0\right\rangle_{\mu_{1} \ldots \mu_{i+1} \mu_{i} \ldots \mu_{k}}
\end{gathered}
$$

- The main reason why form factors are a powerful tool is that they provide the building blocks for every correlation function in QFT. For example, two-point functions such as $\langle 0| \mathcal{O}_{1}(0) \mathcal{O}_{2}(r)|0\rangle$.
- They can be expressed in terms of FFs by defining the following sum over a complete set of states:

$$
\left.P:=\sum_{k=0}^{\infty} \sum_{\mu_{1}, \ldots, \mu_{k}}^{\ell} \int_{-\infty}^{\infty} \frac{d \theta_{1} \ldots d \theta_{k}}{k!(2 \pi)^{k}}\left|\theta_{k} \cdots \theta_{1}\right| 0\right\rangle_{\mu_{k} \ldots \mu_{1} \mu_{1} \ldots \mu_{k}}\langle 0| \theta_{1} \cdots \theta_{k} \mid
$$

ℓ is the number of particle species.

- It is easy to "shift" operators away from the origin by using:

$$
\left.\langle 0| \mathcal{O}(\mathbf{x})\left|\theta_{1}, \ldots, \theta_{k}\right| 0\right\rangle_{\mu_{1} \ldots \mu_{k}}=\left(\prod_{j=1}^{k} e^{i p^{\nu}\left(\theta_{j}\right) x_{\nu}}\right) F_{k}^{\mathcal{O} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)
$$

- Under Hermitian conjugation:

$$
\left.\mu_{1} \ldots \mu_{k}\langle 0| \theta_{k} \ldots \theta_{1}|\mathcal{O}(0)| 0\right\rangle=\left(F_{k}^{\mathcal{O}^{\dagger} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)\right)^{*}
$$

3. Correlation Functions from Form Factors

- Inserting the projector P between the two fields in a two-point function we can write:

Form Factor Expansion

$$
\begin{aligned}
\langle 0| \mathcal{O}_{1}(0) \mathcal{O}_{2}(r)|0\rangle & =\sum_{k=0}^{\infty} \sum_{\mu_{1}, \ldots, \mu_{k}}^{\ell} \int_{-\infty}^{\infty} \frac{d \theta_{1} \ldots d \theta_{k}}{k!(2 \pi)^{k}} F_{k}^{\mathcal{O}_{1} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right) \\
& \times F_{k}^{\mathcal{O}_{2}^{\dagger} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)^{*} e^{-r \sum_{j=1}^{k} m_{j} \cosh \theta_{j}}
\end{aligned}
$$

- This is a rapidly convergent large-distance expansion $\left(m_{j} r \gg 1\right)$.
- But in many cases, it also provides a very good description of the short-distance behaviour, even with just few terms in the sum.
- This provides a way to test features of the underlying CFT by employing FFs of fields in the massive QFT.
- Since entanglement measures depend on correlators of BPTFs this kind of expansion becomes our main computational method in massive QFT.

4. A Riemann-Hilbert Problem

- In integrable QFT form factors satisfy a set of equations which specify their monodromy properties (Watson's equations) and their pole structure (Residue equations) [Karowski \&Weisz'78; Smirnov'90s]. Good places to learn more [Smirnov's Book'92; Mussardo's Book'20]
- The programme was extended to BPTFs in [Cardy, OC-A \& Doyon'08]
- In what follows I will call ω the semi-locality index as introduced in [Yurov \& Zamolodchikov'91]. This represents the phase associated with exchanging the local field \mathcal{O} with a particle-creating field. i.e. $\omega=-1$ for the field σ in the Ising model.

- The first Watson equation describes the effect of exchanging two particles. The second equation, also know as crossing relation specifies the properties of the FF under a $2 \pi i$ rapidity shift.

4. Watson's Equations for Simple Twist-Fields

$$
F_{k}^{\mathcal{O} \mid \ldots \mu_{p} \mu_{p+1} \ldots}\left(\ldots \theta_{p}, \theta_{p+1} \ldots\right)=S_{\mu_{p} \mu_{p+1}}\left(\theta_{p, p+1}\right) F_{k}^{\mathcal{O} \mid \ldots \mu_{p+1} \mu_{p} \ldots}\left(\ldots, \theta_{p+1}, \theta_{p}, \ldots\right)
$$

$$
F_{k}^{\mathcal{O} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}+2 \pi i, \ldots, \theta_{k}\right)=\omega F_{k}^{\mathcal{O} \mid \mu_{2} \ldots \mu_{k} \mu_{1}}\left(\theta_{2}, \ldots, \theta_{k}, \theta_{1}\right)
$$

5. Watson's Equations for BPTFs

$$
F_{k}^{\mathcal{T} \mid \ldots \mu_{p} \mu_{p+1} \cdots}\left(\ldots \theta_{p}, \theta_{p+1} \ldots\right)=S_{\mu_{p} \mu_{p+1}}\left(\theta_{p, p+1}\right) F_{k}^{\mathcal{T} \mid \ldots \mu_{p+1} \mu_{p} \ldots}\left(\ldots, \theta_{p+1}, \theta_{p}, \ldots\right)
$$

$$
S_{\mu_{p}} \mu_{p+1}\left(\theta_{\rho p+1}\right)
$$

$$
F_{k}^{\mathcal{T} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}+2 \pi i, \ldots, \theta_{k}\right)=F_{k}^{\mathcal{T} \mid \mu_{2} \ldots \mu_{k} \hat{\mu}_{1}}\left(\theta_{2}, \ldots, \theta_{k}, \theta_{1}\right)
$$

- Now, the quantum numbers μ_{i} are double indices, labelling the particle and the copy.

6. Kinematic Residue Equations for Simple Twist Fields

- Form factors posses kinematic poles when the rapidities of conjugate particles differ by $i \pi$.
- They provide a set of equations relating $k+2$ - to k-particle form factors which can be solved recursively.

Kinematic Residue Equations

$$
\begin{aligned}
& \lim _{\bar{\theta}_{0} \rightarrow \theta_{0}}\left(\bar{\theta}_{0}-\theta_{0}\right) F_{k+2}^{\mathcal{O} \mid \bar{\mu} \mu \mu_{1} \ldots \mu_{k}}\left(\bar{\theta}_{0}+i \pi, \theta_{0}, \theta_{1}, \ldots, \theta_{k}\right) \\
& =i\left(1-\omega \prod_{j=1}^{k} S_{\mu \mu_{j}}\left(\theta_{0 j}\right)\right) F_{k}^{\mathcal{O} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)
\end{aligned}
$$

7. Kinematic Residue Equations for BPTFs

- For BPTFs, the kinematic residue equation separates in two:

$$
\lim _{\bar{\theta}_{0} \rightarrow \theta_{0}}\left(\bar{\theta}_{0}-\theta_{0}\right) F_{k+2}^{\mathcal{T} \mid \bar{\mu} \mu \mu_{1} \ldots \mu_{k}}\left(\bar{\theta}_{0}+i \pi, \theta_{0}, \theta_{1}, \ldots, \theta_{k}\right)=i F_{k}^{\mathcal{T} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)
$$

$$
\lim _{\bar{\theta}_{0} \rightarrow \theta_{0}}\left(\bar{\theta}_{0}-\theta_{0}\right) F_{k+2}^{\mathcal{T} \mid \bar{\mu} \hat{\mu} \mu_{1} \ldots \mu_{k}}\left(\bar{\theta}_{0}+i \pi, \theta_{0}, \theta_{1}, \ldots, \theta_{k}\right)=-i \prod_{j=1}^{k} S_{\hat{\mu} \mu_{j}}\left(\theta_{0 j}\right) F_{k}^{\mathcal{T} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)
$$

- Form factors posses bound state poles if the S-matrix has.
- They provide a set of recursive equations relating $k+2$ - to $k+1$ particle form factors which can be solved recursively.

$$
\lim _{\epsilon \rightarrow 0} \epsilon F_{k+2}^{\mathcal{O} \mid a b \mu_{1} \ldots \mu_{k}}\left(\theta+i \bar{u}_{a c}^{b}+\epsilon, \theta-i \bar{u}_{b c}^{a}, \theta_{1}, \ldots, \theta_{k}\right)=i \Gamma_{a b}^{c} F_{k+1}^{\mathcal{O} \mid c \mu_{1} \ldots \mu_{k}}\left(\theta, \theta_{1}, \ldots, \theta_{k}\right)
$$

- Here $\bar{u}_{a c}^{b}=\pi-u_{a c}^{b}$ and $i u_{a c}^{b}$ is a simple pole of the S-matrix $S_{a c}(\theta) . \quad \Gamma_{a b}^{c}$ is the square root of the residue of $S_{a b}(\theta)$ at $i u_{a b}^{c}$ corresponding to the bound state c in the process $a+b \rightarrow c$.
- The same equations hold for BPTFs if a, b live in the same copy.

9. Other Constraints: Scaling and Asymptotics

- Relativistic Invariance: Under a Lorenz boost rapidities experience a constant shift. Form factors scale as:

Relativistic Invariance

$$
F_{k}^{\mathcal{O} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}+\lambda, \ldots, \theta_{k}+\lambda\right)=e^{s \lambda} F_{k}^{\mathcal{O} \mid \mu_{1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{k}\right)
$$

where s is called the spin of the operator \mathcal{O}. Thus, the form factors of spinless operators (like \mathcal{T}) are functions of rapidity differences only.

- Asymptotic Bounds: these are constraints to the asymptotic behaviour of the form factors which help with operator identification [Delfino \& Mussardo'95]

Asymptotic Bounds

$$
\lim _{\theta_{i} \rightarrow \infty} F_{k}^{\mathcal{O} \mid \mu_{1} \ldots \mu_{i} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{i}, \ldots \theta_{k}\right) \propto e^{\alpha \theta_{i}} \quad \text { with } \quad \alpha \leq \Delta_{\mathcal{O}}
$$

10. Momentum Space Clustering

- Momentum Space Cluster Decomposition Property: It has been observed and shown under special assumptions [Delfino, Cardy \& Simonetti'96]:

Momentum Space Cluster Property

$$
\begin{aligned}
& \lim _{\theta_{1}, \ldots, \theta_{p} \rightarrow \infty} F_{k}^{\mathcal{O}_{1} \mid \mu_{1} \ldots \mu_{p} \mu_{p+1} \ldots \mu_{k}}\left(\theta_{1}, \ldots, \theta_{p}, \theta_{p+1} \ldots \theta_{k}\right) \\
& \sim F_{p}^{\mathcal{O}_{2} \mid \mu_{1} \ldots \mu_{p}}\left(\theta_{1}, \ldots, \theta_{p}\right) F_{k-p}^{\mathcal{O}_{3} \mid \mu_{p+1} \ldots \mu_{k}}\left(\theta_{p+1}, \ldots, \theta_{k}\right)
\end{aligned}
$$

- The operators $\mathcal{O}_{1,2,3}$ may all be different if the theory has internal symmetries (i.e. the Ising model has \mathbb{Z}_{2} symmetry). Clustering can then be used to systematically construct the FFs of new fields from the FFs of one original field.
- For many operators and theories, the three fields are the same. This can also be useful for instance to fix the value of the 1-particle form factor (a constant for spinless fields) from the asymptotics of the two-particle form factor.

11. Generalizations

- An interesting observation is that if we combine the equations for simple twist fields with those for BPTFs we can find a new set of form factor equations which describe composite fields : $\varphi \mathcal{T}$:.
- For instance, in the Ising model we could define the field : $\sigma \mathcal{T}$: which combines \mathbb{Z}_{2} and \mathbb{Z}_{n} symmetries.
- These fields have found a recent application in the context of entanglement. They can be used to compute the symmetry resolved entanglement entropy and a form factor programme has been formulated for them [Horváth \& Calabrese'20]

