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1. Preliminary Definitions

@ In 1+1D QFT it is natural to write a k-particle in-state as
161, .-, 0k]0) 4y with 01> >0

where {0;} are rapidities in terms of which the energy and momen-
tum of each excitation are e(f) = mcosh and p(f) = msinh 6.
1 - - - g are quantum numbers. |0) = ((0|)T the ground state.

@ Let O(0) be a local field located at the origin of space-time:

k-Particle Form Factor of a Local Field

FOW1g, L 61) = (0]O(0) |61, . ., 0k ]0) iy

@ We will also need the S-matrix. We will look only at the diagonal
case:

Two Particle Scattering Matrix

|017 000 701, 0i+1a oo 9k|0>ul~~-mm+1---uk =

SMHHA (91 — 9i+1)|917 0009 9i+1,9i; 000 9k|0>#1~-~#z‘+1l—ti~-»ﬂk
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2. Correlation Functions

@ The main reason why form factors are a powerful tool is that they
provide the building blocks for every correlation function in QFT.
For example, two-point functions such as (0|01 (0)Oz(r)|0).

@ They can be expressed in terms of FFs by defining the following
sum over a complete set of states:

doy ...doy
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k=0 p1,.
¢ is the number of particle species.
o It is easy to “shift” operators away from the origin by using:

k

<0|O(X)|01’79k|0>ﬂluk = Heipv(ej)mv FI?‘HI---Hk(ol,”.’ak).
j=1

@ Under Hermitian conjugation:

o (010, . 01]0(0)]0) = (FC 1 gy 0,))*
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3. Correlation Functions from Form Factors

@ Inserting the projector P between the two fields in a two-point
function we can write:

001 (0)02(MI0) = 3 Z / del dekF;?l'“l Gy, O)

k=0 p1,--

o |p1 ..

— k . )
XF (91,...,9k)*6 T3 =1 m; cosh;

@ This is a rapidly convergent large-distance expansion (m;r > 1).
@ But in many cases, it also provides a very good description of the
short-distance behaviour, even with just few terms in the sum.

@ This provides a way to test features of the underlying CFT by
employing FFs of fields in the massive QFT.

@ Since entanglement measures depend on correlators of BPTFs this

kind of expansion becomes our main computational method in
massive QFT.

ty of London https://olallaggi2l.weebly.com/



4. A Riemann-Hilbert Problem

@ In integrable QFT form factors satisfy a set of equations which
specify their monodromy properties (Watson’s equations) and their
pole structure (Residue equations) [Karowski & Weisz'78; Smirnov’90s].
Good places to learn more [Smirnov’s Book’92; Mussardo’s Book’20]

@ The programme was extended to BPTFs in [Cardy, OC-A & Doyon’08]

@ In what follows I will call w the semi-locality index as introduced in
[Yurov & Zamolodchikov’91]. This represents the phase associated
with exchanging the local field O with a particle-creating field. i.e.
w = —1 for the field ¢ in the Ising model.

@ The first Watson equation describes the effect of exchanging two
particles. The second equation, also know as crossing relation
specifies the properties of the FF under a 27i rapidity shift.
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4. Watson’s Equations for Simple Twist-Fields
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5. Watson’s Equations for BPTF's
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@ Now, the quantum numbers p; are double indices, labelling the
particle and the copy.
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6. Kinematic Residue Equations for Simple Twist Fields

@ Form factors posses kinematic poles when the rapidities of conju-
gate particles differ by im.

@ They provide a set of equations relating k + 2- to k-particle form
factors which can be solved recursively.

Kinematic Residue Equations

lim (B — 00) Fyy 5™ (B0 + i, 00,01, ..., O1)
6o—00

k
=1 (1—wHSWj(00j)) FSIMI'“Mk(gh..A,@k)
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7. Kinematic Residue Equations for BPTFs

@ For BPTFs, the kinematic residue equation separates in two:

_lim (éo — QQ)FZ"ZI’LNlm#k (éo + im,00,01,...,0k) = iFle'ulmuk (61,...,6k)

o —60 +
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8. Bound State Residue Equations

@ Form factors posses bound state poles if the S-matrix has.

@ They provide a set of recursive equations relating k + 2- to k + 1-
particle form factors which can be solved recursively.

. Olabpy...pp ._b L . Olepy ...
g%eFH'Q MR (O iah e, 0—iud,, 01, . . O) = TS, Frog 0 HE (6,61, 6y)
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@ Here @, = m — u, and iul, is a simple pole of the S-matrix

Sac(8). TS, is the square root of the residue of S,(0) at iug,
corresponding to the bound state ¢ in the process a + b — c.

@ The same equations hold for BPTFs if a, b live in the same copy.
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9. Other Constraints: Scaling and Asymptotics

@ Relativistic Invariance: Under a Lorenz boost rapidities experi-
ence a constant shift. Form factors scale as:

Relativistic Invariance

FOW 50 1A, B+ A) = A FOHR (9, 6y)

where s is called the spin of the operator O. Thus, the form factors
of spinless operators (like 7) are functions of rapidity differences
only.

@ Asymptotic Bounds: these are constraints to the asymptotic be-
haviour of the form factors which help with operator identification
[Delfino & Mussardo’95]

Asymptotic Bounds

elim F,?lm'”“"”'”’“(ﬂh sy Biy . 0) x e with o < Ap
i —> 00
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10. Momentum Space Clustering

@ Momentum Space Cluster Decomposition Property: It has been
observed and shown under special assumptions [Delfino, Cardy &
Simonetti’96]:

Momentum Space Cluster Property

. O |p1- phpt1--- ik

lim  F, PHp+ (01, 0p,0p11-..0p)
01,..., 0p—r o0

Oz |pq...p O3|pp41---Hk
~ Fp p(91,...,9p)Fk_p Pt (Op+1,...,0k)

@ The operators Oy 2 3 may all be different if the theory has internal
symmetries (i.e. the Ising model has Zy symmetry). Clustering
can then be used to systematically construct the FFs of new fields
from the FFs of one original field.

@ For many operators and theories, the three fields are the same.
This can also be useful for instance to fix the value of the 1-particle
form factor (a constant for spinless fields) from the asymptotics of
the two-particle form factor.
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11. Generalizations

@ An interesting observation is that if we combine the equations for
simple twist fields with those for BPTFs we can find a new set of
form factor equations which describe composite fields : T :.

@ For instance, in the Ising model we could define the field : o7 :
which combines Zy and 7Z,, symmetries.

@ These fields have found a recent application in the context of en-
tanglement. They can be used to compute the symmetry resolved
entanglement entropy and a form factor programme has been for-
mulated for them [Horvath & Calabrese’20]
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