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We discuss the thermodynamic Bethe ansatz, and explain how it allows one to reduce the
infinite-volume thermoadynamics of a (1 + D-dimensional purcly elastic scaliering theory to the
solution of a set of integral equations for the one-particle excitation energies. The free energy at
zero chemical potential(s) and temperature 7 is related to the ground state energy Ly R) of the
theory on a cylinder of circumference R =1/7. E,(R) delermines properiies of the CFT
describing the UV limit of the given mussive theorv. These include the central charge (which we
investigated in earlier work). the scaling dimension d of the conformal field whose perturbation
leads to the massive theory, the coefficients in the conformal perturbation theory (CPT)
expansion of £4(R) in powers ot R>"¢, and the bulk term in the CPT culeulation of the
ground-state energy. We determine the bulk term analytically, and obtain pumericully the first
six coefficients in the expansion of E(R) for many purely elastic scuttering theories, including
the scaling limit of the 7 = 7, Ising model in a magnetic field. The perfect agreement with (more
limited) direct CPT results provides further strong support for the identification of these
theories as specitic perturbed CFTs. We suggest that the singularities of £ (R). the first of
which is responsible for the finite radius of convergence of CPT, are square-roon branch points
and related to the zeros of the partition function of the corresponding lattice model.

1. Introduction and summary

Recent progress in (1 + 1)-dimensional quantum field theory (QFT) includes the
discovery of many new integrable massive QFTs [1-14]. This was possible due to
an interplay and convergence of several ideas. One of these, initiated by A.B.
Zamolodchikov [1,2], is to consider a massive QFT as a certain relevant perturba-
tion of the conformal ficld theory (CFT) describing its UV limit. Since such a
perturbation corresponds to a super-renormalizable interaction in standard QFT
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language, it is assumed that there is a one-to-one correspondence between the
fields in the CFT and those in the perturbed massive theory. Recall that there are
infinitely many chiral fields in a CFT, i.e. (anti)holomorphic currents, that give rise
to infinitely many integrals of motion. Zamolodchikov gave a sufficient condition,
now know as the “counting argument”, to determine if some combination(s) of
integrals of motion of a given Lorentz spin survive the perturbation of the CFT. If
some do survive, and if the perturbed theory is purely massive, as one can argue in
many cases, then it must be describable by a factorizable S-matrix. The values of
the Lorentz spins of the integrals of motion restrict the possible bound-state
structure and mass ratios in the theory. The bootstrap principle [2,15, 16] then
allows one to actually construct a conjecture for the S-matrix of the theory, in the
process discovering its particle content (see ref. [3] and sect. 2 for more details).
Especially the last step involves several assumptions that are difficult to justify
from the pure S-matrix or perturbed CFT poit of view, beyand the fact that they
lead to self-consistent results. In particular, there are usually ambiguous factors in
the S-matrix elements - two-dimensional CDD factors [17] with unphysical poles.

To check these conjectures for the S-matrices another idea proves to be very
useful. It has been known for a long time [18] that the infinite-volume thermody-
namics of a massive QFT can be expressed solely in terms of its S-matrix. In
addition, in a euclidean formulation it is obvious (see sect. 4) that the free energy
of a theory on an infinite line at temperature 7 and zero chemical potential(s) is
related in a simple way to the ground-state energy £,(R) of the same QFT on a
periodic space of length R =1/7*, i.e. on an infinitely long cylinder. Theretore
E(R) can also be calculated in terms of S-matrix data. Now the point is that
E,(R) contains information about the CFT describing the UV limit of the given
massive theory. Explicitly, normalizing the ground-state energy to vanish as R — x.
it must be of the form

mc(r)

OR (1)

Eh( R)= -

where ¢(r) is a funcltion of r = Rm (m being, say, the smallest mass in the theory)
which vanishes at infinity. (This simple scaling behaviour holds for all the theories
considered in this paper, as they are each characterized by a single dimensiontul
coupling.) ¢(0) is known [19, 20] to be equal to ¢ = ¢ - 12d,,. where ¢ is the central
charge and d, the lowest scaling dimension of the UV CFT. The small-r expansion
of é(r) also allows one to extract the scaling dimension d,, of the conformal field
@ by which one has to perturb the UV CFT to obtain the massive theory in
question. Furthermore, the coefficients in the expansion can he calculated in
conformal perturbation theory (CPT) - until one or one’s computer is exhausted.

* We set fi. . and Boltzmann's constant equal to | in this paper.
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which 1s usually the case after the first or second term — and compared with the
corresponding results obtained by the above method (where several more coeffi-
cients can be calculated numerically before exhaustion oceurs).

This method, when applied to a factorizable S-matrix theory, has recently
become known as the thermodynamic Bethe ansatz [21](TBA). So far, the TBA has
achieved extensive use [3,21,22] only for theories with a dizgonal S-matrix, also
known as purely elastic scattering theortes (we will say more about these theories
shortly). For such theories the TBA can be applied in a straightforward and
explicit way, as we will see.

If the application of the TBA to a conjectured S-matrix leads to values of ¢ and
d g4, which are those of the CFT whose perturbation is supposed to give rise to the
scattering theory in question. this provides very strong evidence that the comnjec-
tured S-matrix is correcl. The previously mentioned ambiguous factors in the
S-matrices can be fixed in this way [3]. Note that the consistency of the TBA with
CFT requirements might also be considered as a posteriori evidence for the
assumption underlying the whole perturbed-CFT approach, namely that the some-
what formal procedure of perturbing a CFT really leads to consistent QFTs.
Conversely, if a given S-matrix does nor lead to reasonable™ fractions for ¢ and
dg. the S-matrix is presumably not that of any consistent QFT. (This seems to be
the case for some of the scattering theories discussed in ref, [8], which were already
problematic on the pure S-matrix level.)

Al.B. Zamolodchikov [21] first calculated &(r) for the perturbed Yang-Lee CFT
and the scaling 3-state Potts model (whose é(r) functions just differ by a factor of
2, cf. below). We then [3] calculated &0) for many classes of purely elastic
scattering theories, clarifying some issucs in their identification as perturbed CFTs.
The purpose of this paper is to extend these works in two directions. On the one
hand, we want to clarify the physical basis of the TBA and show how it allows one
to caleulate the general thermodynamics (i.e. at arbitrary chemical potentials) of a
purely elastic scattering theory. This does not require a large extension of earlier
work; nevertheless. because of the conceptual importance of being able to reduce
the complete thermodynamics of a class of nontrivial interacting QFTs to simple
integral equations. we felt it is worthwhile (o present these considerations. Sec-
ondly, we perform extensive analytical and numerical studies of ¢(r) for the
(minimal, see below) purely elastic scattering theories considered in ref. [3], further
supporting the identification of these theories as perturbations of specific CFTs.

These studies also allow us to gain some insight into the singularity structure of
clr).

Before giving an outline of the paper, let us say a few words about purely elastic
scattering theories. In table | we have summarized important data of the purely
elastic scatrering theories we will consider. They are alf related 10 some affine Lie

algebra £ (listed in the first column), in that the Lorentz spins of the integrals of
motion in a given S-matrix theory are the exponents of the corresponding affine
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TasLE 1 5
Data of the perturbed CFTs and S-matrices considered

Z UV CFT é v Al Refs.
2n 2{n+1 2
ALY Z, ., parafermions —S~———) = {1,27]
n+3 n+3 n+1
2n 4(2n + 1) 2 2n -1
AGL M,, . . [4-6]
2n 22 In+3 2n+3 { 2n+1 2n+1 }
2(n—1 1 n-2
D" r,,=yn/2 orbifold ! ¢ ) { , ,1} [3,10]
n n-1 n-1
B Tricritical 3-st. Potts ¢ g {4.4.3 {7.11)
EL Tricritical Ising o H {4.3.5.5.1) [5,7.8]
E Critical Ising 4 5 (%.+8441.10) [2]

Lie algebra. In addition, the number of particles in the Z-related theory is equal to
the rank of £ (except for the somewhat special A)-related theories, which have n
particles). Further relations of the masses and integrals of motion to the affine Lie
algebra will be mentioned in sect. 2.

Actually there are two purely elastic scattering theories related to each Lie
algebra, differing by CDD factors with unphysical poles. We will only consider the
so-called minimal S-matrix theories where the additional CDD factors are absent
(more in sect. 2). These theories are perturbations of nontrivial CFTs, which are
indicated in column 2 of table 1. Besides the well-known CFTs indicated explicitly
by name, note that some other familiar (perturbed) CFTs are hiding in this table:
The thermal perturbation of the eritical Ising model leads to the AP-related model
(the “Ising field theory™, see sect. 6), the perturbation of the critical 3-state Potts
model by the energy operator is described by the A')-related theory [1], and the
unique perturbation of the Yang-Lee CFT M, * (which describes [23] the
universality class of the Yang-Lee edge singularity [24,25]) in two dimensions)
leads to the A'2-related theory.

We should also mention that the S-matrix of the D{"-related model differs from
that of the sine-Gordon model, at the special value of the coupling where the
(n — 1)th breather is at threshold, only by the sign of some scattering matrix
elements (see ref. [3] for a detailed discussion). This implies (cf. sect. 3) that these
theories have the same infinite volume thermodynamics. The S-matrices of the
models labelled by A} and A2 are also closely related {3]. To each of the n
particles in the A%)-related theory there corresponds a particle and an anti-par-
ticle in the AY)-related model. From the explicit S-matrices and the discussion in

* M,, , denotes the Virasoro minimal model with central charge ¢ =1 =6lp - 4)’/pq and diagonal
modular invariant partition function.
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sect. 3 below, one sees that the free energies of the two theories just differ by a
factor of 2, if each member of a triplet of related particles in the two theories has
the same chemical potential (note that a particle and its anti-particle can have
identical chemical potentials in a purely elastic scattering theory since all particle
numbers are strictly conserved: there is no pair creation or annihilation). In
particular, setting all chemical potentials to 0, the é(r) functions of these two
theories are equal up to a factor of 2.

Recent work {14] suggests that the relation of the S-matrix theories of table 1 to
affine Lie algebras can be understood as part of a larger picture in which
integrable massive QFTs (generically with non-diagonal S-matrix) are associated (o
certain cosets of affine Lie algebras. Note that the S-matrix theories related to A2!
are somewhat special. They are the only ones related to rwisted affine algebras,
and they are also the only ones which are perturbations of non-unitary {26] CFTs,
namely the Virasoro minimal models M, ,, .+ These scattering theories have been
argued (6] to correspond to “restrictions” of the sine-Gordon model at special
values of the coupling, where the solitons can be consistently eliminated from the
spectrum of the theory. in terms of the “larger picture” alluded to above one
might therefore consider these theories to be related to A", rather than A3 since
the sine-Gordon model is the A"l afline Toda theory with purely imaginary
coupling.

€ =c—12d, is presented in the third column of the table. For the non-unitary
CFTs the scaling dimension d,, of the field creating the ground state is negative,
and so their ¢ is larger than their central charge: in particular, these ¢ are just one
half those of the A')) -related theories, in agreement with our earlier remarks about
the ¢(r) functions in these theories. The fourth column contains the renormaliza-
tion group eigenvalue v of the perturbing field @, ie. y =2 ~ d,- Note that the
perturbations we are considering are strongly relevant: () < dy < 1 for all perturba-
tions of unitary theories, and — 2 < d., < 0 for the perturbations of the non-unitary
madels M,

In the fifth column we give the set Ay of rational numbers which characterizes
the S-matrix element describing the scattering of the lightest particles in the theory
(if there are several species of lightest particles one can pick any one of them as
“the lightest particle”). A, will be defined in sect. 2. Finally. the last column
contains the references in which the S-matrix of a theory was first presented
and /or identified as a perturbed CFT. The reader should consult these references
for the explicit form of the S-matrix elements: we of course use them in our
numerical calculations of ¢(r). (The A, A%'. and D;"-related S-matrices are
given in ref. [3] in the same notation as used here.)

The paper is organized as follows. In sect. 2 we present some details of the
general structure of the scattering matrix elements of purely elastic scattering
theories;: in particular. we derive some properties of the phase shifts in these
theories, egs. (13). (14) and (17), which will be needed later. In sect. 3 we explain

ZLSAR
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how the TBA allows one to reduce the calculation of the complete infinite-volume
thermodynamics of a purely elastic scattering theory (in its low-density phase) to
the solution of a set of coupled nonlinear integral equations for the one-particle
excitation energies. We will see that. roughly speaking, the thermodynamics of a
purely elastic scattering theory is identical to that of a free theory, except that one
has to use a nontrivial dispersion relation determined by the above integral
equations. In sect. 4 we turn to the study of é(r), by relating it to the free energy of
the previous section, at zero chemical potential. We show that the leading
correction to &(0) is an r’-term (corresponding to a bulk term in E,(R)) whose
coefficient can be expressed very simply in terms of S-matrix data, cf. eq. (63).
Higher-order corrections are discussed in sect. 5, where we use CPT to show that

these corrections take the form of a power series in r*. Here

§= {2"". if the UV CFT is {“”'taw. .
y non-unitary

We also calculate the first nontrivial coefficient of the CPT expansion analytically.
and the second coefficient numerically in several cases. Sect. 6 is devoted to
scattering theories with constant phase shifts, e.g. free theories or the Ising field
theory. In these cases we have integral representations for é(r) and can rewrite
them to explicitly exhibit the singularity structure of the ¢(r) and analytically
obtain all the coefficients in their small-r expansions. This will be instructive and
useful on several occasions. For instance, we use these results to supplement those
of refs. [28,29] to give compact and illuminating expressions for the partition
functions of free fermions, free bosons, and the Ising field theory in finite volume.

Our numerical work is presented in sect. 7. We numerically solve the TBA
integral equations for the one-particle excitation energies to high precision. and
calculate é(r) for many different scattering theories. (For the important case of the
magnetic perturbation of the Ising model at its critical temperature, the B4
related theory, we present some of the calculated é(r) values in table 2.) From the
&(r) data we extract y (table 3) and six of the coefficients in the expansion of ¢(r)
in powers of r* (table 4). These results are in perfect agreement with predictions
of CPT (whenever available), as can be seen in table 5 where we compare the TBA
prediction for the second coefficient with the CPT result. This comparison is
possible after obtaining the coefficient « relating the perturbing parameter A of
CPT to the power m] of the lightest mass in the theory. & is also given in table 5.
Finally, we estimate the form and position of the first singularity of ¢(r), which
determines the finite, nonzero radius of convergence of (IR cutoff) CPT. The
numerical results indicate (table 6) that these singularities are square-root branch
points. This will be explained in sect. 8. where we show that the singularities of the
eigenvalues of the perturbed CFT hamiltonian are a consequence of level-crossing
at complex values of A. We also outline a perhaps somewhat more physical way to
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understand the singularities of ¢(r) by providing evidence that they are related to
the zeros of the partition function of the corresponding lattice model close to the
critical point. The last section contains brief concluding remarks.

2. Purely elastic scattering theories

We briefly summarize the basic aspects of purely elastic scattering theories
which will be used in later sections. For more details, including some slightly subtle
issues that will not be mentioned here, we refer the reader to ref. [3].

We define o purely elastic scatiéring theory o be a (1 + 1)-dimensional QFT
whose S-matrix is factorizable and diagonal. Factorizability means that the scatter-
ing amplitudes of any number of particles can be written as products of the
two-particle amplitudes. Even though a diagonal factorizable S-matrix automati-
cally satisfies the Yang-Baxter equation, this does nol mean that the S-matrix is
trivial, because it can have a highly complicated bound-state structure.

The scattering of particles @ and b is described by the two-particle scattering
amplitude §,,. which is a function of the relative rapidity 8,, = |8, — 6,|. Recall
that the rapidity # provides a convenient way of paramelrizing the momentum of a
particle in | -+ I dimensions. It is defined by

(p".p')=(mecosh & msinh ). (3)
In an obvious notation for states, the definition of S,,(0) reads
|H( Hn)b( f"I.’:)>ln = S;ah{ H.Ira”“( Ha)h{ 91') >n-:t & [4}

Note that S ,(8) is (for real. i.e. physical, rapidities) just the exponential of the
phase shift of the in- with respect to the out-state, §,,,(#) = ¢ @),

When S, is expressed as a function of 8, the requirements of real analyticity.
unitarity, and crossing read

Real analyticity: Si(8)=S5,(-6%).
Unitarity: S.,(8)S,.(—8)=1,
Crossing: S.p(0) =58, (im-96), (5)

where b denotes the antiparticle of b. Assuming. in addition, that scattering
amplitudes are meromorphic in 6 and polynomially bounded in the momenta then
implies [3] that they are products of basic building blocks:

S.(80)="T11 [f.(8). (6a)

o Sy,




TR Klassen. E. Melzer / Thermodynamics of scatjering theories

where

f.(8) =sinh 5(8 + iam) /sinh $(6 — iaw). (6b)

Note that these building blocks are just two-dimensional CDD factors [17]. If all
particles are stable, as we will assume, the numbers a constituting the sets A, are
real, and we can choose ~ ] <a < 1.

Fora # 0,1 f,(8) has a simple pole at # = ia7r, and a simple zero at § = —iar.
We see that purely elastic scattering theories are nontrivial only because of these
poles (paired with zeros via unitarity, eq. (5)), and are uniquely determined by the
positions and orders of the poles, as encoded in the sets A .

In this paper we will concentrate on purely elastic Scattering theories which are
perturbations of nontrivial CFTs (i.e. not a collection of free bosons). In these
S-matrix theories the poles of all scattering amplitudes occur exclusively in the
physical strip 0 < Im 6,, < 7. The corresponding S-matrices are known as minimal
S-matrices. as there exists a unique [3], one-parameter deformation of each of
these theories whose scattering matrix elements have additional factors of £.(6)
with negative a. These latter nonminimal S-matrices are very likely [3.8,9.30]
those of (real-coupling) affine Toda field theories [31], with the one parameter of
the deformation corresponding to the coupling constant of the Toda theories. The
UV limits of (real-coupling) affine Toda field theories are free bosonic CETs [3].

Unless otherwise stated, we will from now on restrict ourselves to minimal
S-matrix theories. In such theories a simple pole of §,,(8) at 6,, =, in the
direct channel indicates that there exists a bound state ¢ of @ and b whose mass is

b
ml=ml+m}+2m,m,cosu’, . (7)

More generally. it seems [3.8] that in the minimal S-matrix theories a particle
appearing as any odd-order pole in the direct channel of a scattering amplitude
-should be considered to be a bound state. (In the nonminimal S-matrix theories on
the other hand, one can argue [3] that none of the poles should be considered to
be bound-state poles in any literal sense.)

The factorization of scattering amplitudes on simple poles implies that if ¢
appears as a simple pole of S,,(6) (in the direct channel). its scattering amplitude
with any other particle d must satisfy the bootstrap equation [2)

S.a(0) = S,,(0+iul.)s,, (6 -ial.), (8)

where i, =7 — u,. This fundamental equation allows one to actually construct a
purely elastic scattering theory once one knows — or has a conjecture for — the
scattering amplitudes of the one or two fundamental particles (see ref. [3] for
details). It is possible [2] to make a plausible conjecture for the amplitudes of the
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fundamental particles, based on the knowledge of some of the (Lorentz) spins of
the integrals of motion of the scattering theory.

If we assume that the conserved charges of a purely elastic scattering theory are
local and diagonal on asymptotic one-particle states. then Lorentz covariance
dictates that a conserved charge Q. of spin s acts on an N-particle (asymptotic)
state as follows:

N
Q,laf(8,)...ay(by)) = Z. Y.I,,\)C‘"']ul(m)--~“\{H.v)}a (9)

fi= 1

where the ’yf,;" are some (real) coefficients. Note that for s = 1, corresponding to
energy—momentum conservation, the " are just the masses 1, in the theory, up
to an arbitrary overall factor.

It we require eg. (9) also to hold for imaginary values of the rapidities,
corresponding to bound-state poles in certain channels, the statement “c¢ is a
bound state of g and b leads to the following consistency condition [2] on the
coefficients yi'"

— il

A }_:)\1‘:1\!?1. ) (l[”

)yl g
% Yo &

This equation determines each of the vectors y*’ = (/")) up to an overall factor.
(The subscript ¢ here runs over the different particles in the model, which are
uniquely associated {3,3.9. 10] to the nodes of the Dynkin diagram of the corre-
sponding (ordinary) Lic algebra. We will always choose @ = 1 to correspond to the
lightest particle in the model.) In previous work [3] we found that it is possible to
state the values of the v in all the Lic-algebra refated S-matrix theories in a
rather elegant and concise way*. Let &, denote the Coxeter number of the
ordinary Lie algebra %. Then, if 5 (mod 4. ) is not an exponent of 4. " ol the
Z.refated minimal or nonminimal S-matrix theory vanishes. On the other hand.
if s is an exponent of %, the vector ' is an eigenvecior of the incidence matrix
I, of 7% corresponding to the eigenvalue 2cos(ws/h . ). Furthermore, ¥'% =
Y2 = 40320 The case of % = A2 has to be treated slightly differently: the
above is still true if we set h, = sh; =2n + 1. let the exponents run over the first
n exponents of A3 and use for /7, the “generalized incidence matrix™ [3] obtained
by replacing the last 0 on the diagonal of the incidence matrix of A, by 1.

As pointed out in ref. [10]. it is not an accident that cq. (10) has a structure
similar to the bootstrap equation (8). The relation between these equations can be

seen as follows. Let us introduce

d
eup(B) = —ige InSpu(0) = Y e (#). (11)

* H. Braden and E. Cornigan have informed us that this was also noticed by P. Daorey.
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where we defined

d sin a7
‘Pu({’)):_[@l“fu(ﬁ)z_m' (12)
For 6 = () we can expand
cunl8) = = L wlhe (13)
k=1
with (see ref. [32], formula 1.461(1))
¢ihl=2 ¥ sin(kam). (14)
aEA,,

Inserting this expansion into the (logarithmic derivative of the) bootstrap equation
we obtain

(k) _ (k) o= ikih; (kY ki,
Pea = Paa © R 29 (15)

Comparing with eq. (10) we see that the linearly independent columns and rows of
the matrix o’ = ((pﬁ,‘,,’) provide solutions (although not always nontrivial ones, see
below) for the vectors y©! defining the action of local conserved charges on
asymptotic states.

From our foregoing description of the conserved charges we know that there are
no nontrivial charges if their spin is not ene of the exponents of the Lie algebra in
question: so we conclude that ¢’ =0 if k is not among the exponents. We have
also verified this directly using the scattering amplitudes of the minimal and
nonminimal S-matrix theories. If 4 is among the exponents it may still happen that
there exists a nontrivial conserved charge of spin s = k and yet the matrix ¢* is
identically 0. This happens in the cases (i) % =AY, n odd, s=1%n+1)
(i) Z=D" s =n - 1; and (iii) &€ = EM", s = 9.

Except in these special cases the matrix ¢’ has rank one if s is an exponent.
and each of its rows and columns is proportional to the unique vector y**'. (The
only cases where two conserved charges of the same spin exist are for %= B,
s=n—1 when n is even; and in these cases the matrix ¢'*’ is identically 0.) We

therefore conclude that
Cub = P41 Y5 (16)

Here 17 refers to the lightest particle in the theory, and we have normalized the
¥ so that y{*’ = | (one can check that y{*’ + 0 in the cases where the matrix ¢’
1S nontrivial.)
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In particular - and this will be important in sect. 4 — for s = 1 this reduces to
1 P .
¢L-'il = (p(I'llmu'nb ] (17)

where 71, =m,/m,. ¢!} can be calculated from eq. (14) and the set A, given in
table 1.

3. The thermodynamic Bethe ansatz

In this section we explain how the thermodynamic Bethe ansatz (TBA) allows
one 10 reduce the calculation of the complete infinite-*volume™ thermodynamics
of a purely elastic scattering theory (in its low densily phase. in case it also has a
high-density phase) to the solution of a set of coupled nonlinear integral equations
for the one-particle excitation energies and the rapidity distributions of the
particles in the theory.

The thermodynamic Bethe ansatz technique has two parts. The first is based on
the observation that for a system of particles with purely elastic scattering the
asymptotic wave function, i.e. the wave function when all particles are far apart,
has a very simple form. Putting the system in a box and requiring (anti)periodic
boundary conditions for the asymptotic wave function then leads to quantization
conditions on the momenta of the particles of the interacting system, known as the
Bethe ansatz equations. The second part of the TBA is just statistical mechanics:
Going to the thermodynamic [imit one determines the dominant microscopic
configurations of the system consisten! with a given set of macroscopic variables.
The Bethe ansatz cquations then lead to the previously mentioned nonlinear
integral equations.

The method just outlined seems to have been rediscovered several times
[21,33.34]. Note that the word “ansatz”" in most of the various names that have
been used for this method is somewhat misleading: As we have outlined above and
will see in detail below, the TBA just follows from the fact that the scattering is
purely elastic; no additional assumption or input are involved. In particular, it is
not necessary to know the lagrangian or hamiltonian of the theory considered. It
is therefore conceptually quite different from the usual Bethe ansatz [35]. where
one starts with some hamiltonian and in principle has to prore that the Bethe
ansatz provides a complete set of eigenstates.

3.1, THE ASYMPTOTIC WAVE FUNCTION

Consider a purely elastic scattering theory on a circle of circumference L (as we
will see, the TBA becomes exact only in the limit L — o] so one should always
think of L as being very large). Let there be n different species of particles in the
theory, and consider N particles N, of which are of species a. at positions
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Xy x . We will first consider a microscopic description of the system. so we can
talk about its wave function; in subsect. 3.2 we will pass to a Macroscopic
thermodynamic description.

Because the scattering is purely elastic, all particle momenta are asymptotically
conserved, and when all particles are far apart (ie. much farther than the
correlation length R = 1/m,) the wave function of the system must be of the form

ll/(x,,...,xN)=exp(in,x1) Z A(Q)(‘Q(_\’Q). (18)

0&Sy

to which we will refer as the asympiotic wave function. Here the second sum runs
over the N! permutations Q € S, of the N particle positions on the line segment
[-L/2. L/2], and the A(Q) are coefficients depending on the momenta of the
particles, whose ordering on the line is specified by

] if.xQ|< L <x

@(xg)z{ = (19)

(0  otherwise

Up to an irrelevant overall factor the coefficients A(Q) are determined by the
S-mairix of the theory. If the permutations Q = (.. ., i.J....)and Q" differ only by
the exchange of / and . then

A(Q") = S,,(6, - 6,)A(Q). (20)

Since particle momenta are (asymptotically) conserved, we can consider the
momentum of an (asymptotic) particle as part of the quantum numbers character-
izing it. “Identical particles™ are then also meant to have identical momenta. The
requirement that the asymptotic wave function (18) be (ant)symmetric under the
exchange of identical (fermions) bosons can then lead to restrictions on the
allowed rapidities of the particles. (Had we required the appropriate symmetry
properties under exchange of particles of the same species of arbitrary momenta.
the form of the asymptotic wave function (18) would have been more complicated.
without changing the physics.) To state these restrictions, let us define the npe [21]
of a particle of species a as 1, = —=(— 1)+ S, (8 = 0), where (- )/ = + | indicates
if the particle is a boson or fermion, respectively. We will refer to particles of type
I, = x 1 as fermionic and bosonic type particles, respectively. It is then easy to sec
{21} that fermionic type particles of the same species are not allowed to have the
same rapidity ~ i.e. obey an exclusion principle ~ whereas there is no restriction
for bosonic type particles. Since it seems likely (cf. refs. [3] and references therein)
that in a consistent, interacting QFT all particles are of fermionic type. we will
concentrate on this case in the following. It is easy to make the appropriate
changes for bosonic type particles (see refs. [3.21]). if desired.
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Let us return to the asymptotic wave function. Imposing periodic (anti-periodic)
boundary conditions for bosons (fermions)?*,

o ox,= =L, )=(-0"9(....x,=35L....) fori=1.2....N, (21

sanee

leads to
A Qs Q0) = (= 1) b AQ,.... Oy i) (22)

for any Q €S, such that @, = i. From eqs. (20) and (22) we now conclude that

JLj=i

expliLm,sinh6,] [T 5,(6,-06,)=(-1)" fori=12,....N. (23)

. :: .}:.....‘-‘.. ".I\".' i -.I t.~-.‘ .\ ) k
In terms of the phase shifts 8, (6, —#,)= —iInS§ (8, - 6), the logarithm of this
equation leads to a set of coupled transcendental equations for the rapidities.
known as the Berthe ansatz equations:

Lm,sinh6,+ Y. 8,6 -6)=2mn, fori=12,...N. (24)

T e

The {n,} can be considered to be the quantum numbers of the state of the
multi-particle system; n, is an integer (half-odd integer) if / is a boson (fermion).

For definiteness. one has to choose a branch of the logarithm in the definition of
the phase shift 8,,(8). Our convention will be to take 8,,(6 = 0) to be 0 or = if
S,(0) is equal to +1 or —1, respectively. In particular. since for all the Lie
algebra related scattering theories considered in this paper S0 =~ 1)
(without the argument 8. 8, is Kronecker's delta!), we have 5,,(6 = 0) =73, for
these theories. Unitarity, eq. (5), then implies 8,,(8) +8,,( —#) = 2md,, in these
cases.

The Bethe ansatz equations (24) allow one to calculate the individual momenta
of a multi-particle state in a periodic box of size L. up to an error determined by
how good the asymptotic wave function (18) describes the actual state of the
system. A state with a given number of particles is very well described by eq. (13) 1
the average distance between the particles is much larger than the interaction
range. which is roughly the Compton wavelength {1/m of the lightest particle. The
differences between the true momenta and thogedetermined by eq. (24) are
expected to decrease exponentially with L for purely elastic scattering theories
(this is certainly true for arbitrary multi-particle states in the Ising field theory
whose energies can be calculated exactly, see sect. 6; in general this question

* In the infimite-volume limit, in particufar for the infinite-volume thermodynsmics (see subsect. 3.2).
it does not matter which boundary conditions we impose. 1t is however important if we consider
mulli-particle staites on a finite space, cl. the end of sect. 6 for an example.
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deserves further investigation). For free theories the asymptotic wave function is
exact; of course, and since 4, () = 0 we recover the usual quantization conditions
for the momenta of free bosons and fermions from the Bethe ansatz equations. We
stress that the TBA involves only the physical particles of the theory, not the
pseudo-particles of the usual Bethe ansatz method [35], therefore all the rapidities
f, are real.

3.2 THERMODYNAMICS

Belore discussing the explicit details of the thermodynamics, let us answer an
obvious question which comes to mind. Namely, how can the use of an asymptotic
wave function lead to exact results if the system has a nonzero density, so that the
average distance between particles is fimie? The basic reason (18, 34] we expect
exact results in the infinite-volume limit is the existence of a virial expansion for
thermodynamic quantities. In this expansion the nth term is completely specified
by the scattering matrix elements describing the scattering of » particles - ie. a
finite number - in an infinite volume, as shown by Dashen. Ma and Bernstein [18].
For [inite-range interactions the virial expansion is expected to have a nonzero
radius of convergence around zero density (this is rigorously known in many
models), and if the singularity feading to the breakdown of convergenee occurs at
positive values of the density it indicates a phase transition from a low- to a
high-density phase. What the TBA essentially does. is to give us an expression for
a “summed up version” of the virial expansion, with the scattering of any (finite)
number of particles taken into account exactly (in the infinite-volume limit).
Therefore the thermodynamic Bethe ansatz should give exact results for any bulk
quantity in the low-density phase (which for one-dimensional systems is usually the
only phase).

In the thermodynamic limit both L and all N, become infinite. with the
densities N, /L staying finite. We can then introduce the rapidity density p!"(8) as
the number of particles of species @ with rapidities between # and # + 4¢ divided
by L 18. We are assuming that it is possible to choose the intervals A8 (18 can
depend on @) large enough to have an appreciable number of rapidity levels in
them, but small enough so that the p(#) vary only on a scale larger than several
A#. Let us also introduce for each fixed a = 1,. .., n the subsets {n, ,} of the set of
all the n, in eq. (24), where ¢ is now running only over the particles of species a.
Let 8, , be the rapidity values corresponding to these 1, ,. It will be convenient to
assume from now on that the 8, | arc ordered, 4, < 4

o,

Consider the functions J,(#) defined by

e e

e
wn

J(6) =m,sinh@+ 2w % (6, = pi)(B). (2

b=
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where * denotes the convolution

= da’ )
(f=e)6)=[ S—f(a-0)e(8). (26)

x & T

It will become clear shortly that the functions J, (#) are monotonically increasing.
The continuum version of eq. (24) then implies that tor cach a the sequence of n, |
is monotonically increasing with i. 1f J (8) = 27n, /L. then 8 = 8, ,. Such rapidi-
ties 8 will be referred to as roots of species «. Note that their denxiw is p'o). It
the increasing sequence ol n, skips some integers there will be values of # not
among the 6, , such that (1/2%)LJ (8) equals these skipped integers. Such values
of & will be called holes of species . and their density denoted hy p"(#).

For particles of fermionic type the n, , must form a siretly increasing sequence
of integers because these particles are not allowed to have the same rapidity. We
can therefore define a density of states (roots and holes) for the particles of
species a. p, = p" + p™. by

a

d
—J (0) = )— cosh 6 + Z (@, p7)(8). (27)

9
p(0) = 5- 38 R

where ¢,,(0) was deflined in eq. (11) as the derivative of the phase shift 4,,(6).
Since the density of states of any species has to be positive on physical grounds, eq.
(27) implies that the J,(#) must be monotenically increasing functions. We believe
that with some work it is possible to prove explicitly (using eqgs. (32)=(34) below)
that (27) is positive.

We have now assembled all equations and definitions needed 1o derive the
complete thermodynamics of purely elastic scattering theories. In fact, we can hft
most of these results from the classic paper of Yang and Yang [36] on the
thermodynamics of a nonrelativistic gas of bosons with a repulsive d-function
interaction. We just have to take into account that now we have relativistic
kinematics and several species of particles. in general.

Because of the existence of holes (al nonzero temperature) and the assumed
smoothness of the densities p, and p!’. there are many microscopic sequences #,
giving rise to the same macroscopic densities p, and p'!’. The associated entropy
per unit length is given by the standard expression

n

stoipt] = L s, {Ia‘p:d‘)l

am |

I

¥ f d0[p,Inp, ~ 70 gl = (o, = p)in(p, = pl")] . (28)
a=|

known from quantum statistical mechanics. Eq. (27) allows one to express the p!"
in terms of the p,. The equilibrium p, are obtained by minimizing the free energy
per unit length,

f[p]=h[p“’] —Th[p,p"'}‘ (29)
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where

Wl = ¥ f“ d6 p'"(0)m, cosh 8 (30)

a=1

is the energy per unit length of a given rapidity distribution, subject to the
constraint of fixed particle densities

_ Na = (r)
Du:f=[_xd9pu(6). (31)

—

The chemical potentials u, of the different species are introduced, as usual, as
Lagrange multipliers for the densities D,. Introducing €_(#) by

P, (0) 1
= = . (32)
p,(8) es® + ]
and defining
L,(8)=In(t+e <), (33)

the extremum condition can be shown to lead to the folowing set of coupled
nonlinear integral equations for the €, (6) =€ (6, r.{f1,}):

e(0)=—f,r+rm,rcosh®~ Y (¢, *L,)(0) fora=1,....n, (34)
h=1

where fi, =p,/m, and m, =m, /m, (Here, as in most formulas below. we use
r=Rm, or R=1/T as the thermodynamic variable, instead of the temperature 7.
This will be convenient later.) Eq. (34) is the most important equation* of the

* Using the Leray-Schauder-Tychonoff fixed point theorem {37] and a tew other facts of functional
analysis we have proved that eq. (34) has a real solution €, =€ (0, r.{i,}) for r >0 and 4, e R
Clearly any such solution is C* in . and furthermore, using the fact that the ¢, are analytic in 6
in a neighborhood of the real axis, one can show that the same is true for the e,. It is then easy to
see that the solution e, is unique. Analyticity properties of €, in r_and the i, are not quite as
easily established rigorously. The standard way to prove such properties (cf. appendix D of ref. [36}))
is 1o show that one can solve the integral equation for the e, iteratively and that the iteration
converges uniformly in 7 and the g, in sufficiently small complex neighborhoods of any fixed
r=ry>0and 4,=i{,,€R The analyticity of any finite iterate "’ in neighborhoods of the
positive 7~ and the whole real fi,-axes is then inherited by the solution e, =hm, _, €"" We know
from our numerical work in sect. 7 that one can modity the “naive™ iteration of eq. (34) (which does
not converge. see sect. 7). so that it converges to the unique solution for any 7 > 0 and 4, € R 1t is
also clear that the convergence is locally unitorm in » and 4, - at Jeast for real » and ,. We are
sure that with a little bit of effort one can prove analvtically that a suitable form of the iteration
converges locally uniformly in r. ji, (and @ for that matter). Note that the analyticity properties of
e, imply, via eqgs. (36) and (33), that the pressure P(7. u) s analytic in peighborhoods of any T > 0
and 11, € R, 1.e. there are no phase transitions for physical temperatures and chemical potentials.

We will see Jater. however. that the thermodynamics becomes nonanalytic for complex tempera-

tures, and that at least in some cases these nonanalyticities are related to physically interesting

phase transitions.
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TBA, since all thermodynamic quantities can be expressed in terms of the € ,(6), as
we will see presently.

The extremal free energy per unit length f(R,u) is determined by using eqs.
(34) and (27) to rewrite (29) as follows: : n N

-

B
f(R,p) =~ Z] dHL"(e 7, fi)m,cosh '+ }:,u‘,D“{R A), (33)

r:’l a=1

where p denotes the set of all p,. Here the first term can be shown to be the
negative of the pressure P,

n

T
P(T.u)= f do L (8.m/T, pw)m, coshh, (36)

2 =1

as expected from the thermodynamical relation f= —P + L u, D, (the fact that
we freely trade variables like » for T or g for u should not cause any confusion,
we hope).

To summarize: In a given purely elastic scattering theory, a choice of tempera-
ture T=1/R and (dimensionless) chemical potentials 4, determines the €,(6)
through eq. (34). Using (32) in eq. (27) then yields an integral equation determin-
ing the densities p (8) (or p!N@&)). Any desired thermodynamic quantity can be
calculated by using, for instance, eq. (36) and the thermodynamical relation
dP=sdT+ Y, 0, du,.

We sce that the basic objects determining the thermodynamics in the TBA are
the ¢,(#). Their physical interpretation can be obtained as follows. Start with an
equilibrium sequence for the n, in the Bethe ansatz equations (24), and then raise
one n, . corresponding to the rapidity 8, = #, (“h” for hole), to a larger nonequi-
librium value corresponding to #, = 8. This deseribes a one-particle excitation of
species «. A simple calculation, exactly as in ref. [36], then shows that the energy of
the state increases by 7e (8,) - Te (8,). Up to an additive constant we therefore
identify 7€, (@) as the “dressed™ one-particle excitation energy £ (8). The “con-
stant” could a priori be a (model dependent) function of r and the u,,. We fix it by
the requirement that the fraction of occupied states of species « can be written in
the familiar form

U)(H) 1
p.(#) T EAm T

(37)

By eq. (32) this implies that £ (#) = Te (8) + p .

Similarly. the “dressed” momenta of one-particle excitations of species a are
given up to a “constant” by the function J,(8), defined in eq. (25). The constant
can be fixed by the condition that the momentum vanish at 6 = 0. Our choice of
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phase shift for the Lie-algebra related scattering theories (see the end of sect. 3.1)
then implies that the one-particle momenta in these theories are given by p(6) =
J(8) —mD,. This expression for the dressed momenta has an obvious interpreta-
tion as the “naive” zero-temperature momentum m, sinh § modified through the
phase shift a particle of species a experiences in collisions with other particles.

Although eq. (34) for the € (6, r, i) can in general only be solved numerically, in
the low- or high-temperature limits many physical quantities can be obtained
analytically. As an example of quantities which can be calculated exactly in the
high-temperature limit, consider the densities D,, eq. (31). As r — 0, egs. (27) and
(34) imply that 27 Rp},(#) and —4,L (8) satisty the same equation for positive #
(for any fixed values of the fi,). By the uniqueness of the solution of this equation
these quantities therefore become equal for positive # as r — 0. The fact that
p'7(8) is even in @ then implies

x I X ]_4
- (1) e 4 = = e s )
Dﬂ_zf” depi(8) = WR]” dod,L,(0) = —  asR-0. (38)

where L, =lim, _, L (6 =0,r, 4), which is independent of 4. The L, are deter-
mined by eq. (47) of sect. 4, and their values are known [3] for all the theories
discussed in this paper. Note that eq. (38) is also true for a free fermionic type
particle where L, =1, =1In2.

We will not pursue the study of the general thermodynamics any further here:
we leave this to future work.

4. The ground-state scaling function ¢(r)

As an important special case of the thermodynamic considerations of sect. 3 we
can obtain the vacuum energy E(R) of a purely elastic scattering theory restricted
to a periodic space of length R. The vacuum energy E,(R) is related in a simple
way to the free energy of the QFT on an infinite line at finite temperature
T=1/R and zero chemical potentials, as we now explain.

Consider the QFT in its euclidean version on a torus of perpendicular cvcles of
lengths L and R. There are two natural ways 1o pass (o a quantum mechanical
formulation of the theory, namely to choose time in the L or in the R direction. If
we choose time in the L direction and let L — « we have

1
A - : o s ==l /4. i
Ey(R) = Lll_r'nx L ln(Tr”Hc ”), (39)
where H, is the hamiltonian of the theory on a (periodic) space of length R, and
7 the corresponding Hilbert space. Note that the trace in this equation 1s over
the full Hilbert space of the theory, not just some N-particle sector; the trace 1s
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therefore the partition function Z(L, R) in the grand canonical ensemble ar zero
chemical potential(s).

On the other hand, if we choose time in the R direction, the same partition
function now describes the theory with periodic time (period R), ie. at finite
temperature 7= 1/R. The L — x limit is now the thermodynamic limit, and we
abtain

!
Rf(R.u=0)= lim - - in(Tr,, e"), (40)

[ -
where f(R, u) is the free energy per unit length of sect. 3. So we see that
£|J{R}=Rf(R,;,L:O}. (4])

From the exact ground-state energy E,(R) of the massive QFT one can read off
important properties of the theory. Let us first of all discuss the normalization of
the ground-state energy. We would like to choose £,(R) to vanish for R ==, (In a
path-integral representation of the partition function this is equivalent to normaliz-
ing the measure so that its integral is 1 at R ==.) For a generic definition of the
partition function this will only be the case after subtracting a bulk term, BR. and
a boundary term, which is just a constant, from E\UR). On the cvlinder, the case
we are interested in, the boundary term in Ey(R) vanishes. In the TBA calculation
of EJ(R) as Rf(R.u =) the bulk term is also zero, because the free energy per
unit length, eq. (35), vanishes at zero temperature and chemical potential(s) (this
can be traced to the absence of any ‘additional term on the r.hs. of eq. (30)). On
the other hand, in sect. S we will caleulate E£,(R) using conformal perturbation
theory (CPT). In this approach the bulk term does not vanish, and it seems almost
impossible to calculate it using CPT alone. However, as we will see. the exact bulk
term of CPT can be obtained relatively easily by comparison with the TBA results.

Next. consider the finite-size corrections 1o a possible bulk term. In all the
massive theories discussed in this paper there is only one length scale in addition
to the cylinder circumference R: In the language of the S-matrix theory we choose
it to be the correlation length R = 1/m, corresponding to the lightest particle
(other distinct masses, when present. do not introduce independent length scales
since all the mass ratios are fixed). From the viewpoint of CPT R_ is related to the
single coupling A, as discussed in sect. 5.

We conclude, simply by dimensional considerations, that after subtracting a
possible bulk term the vacuum energy E,(R) can be written in the exact form

me(r)

Eu{R)z I 6R

. (42)

where é(r) is a function of the dimensionless scaling length r = R/R_. We will call
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¢(r) the ground-state scaling function. Because of the exponential fall-off of
massive propagators we expect ¢(r) to vanish exponentially as r — «. The TBA
will allow us to easily demonstrate this asymptotic behaviour.

In the opposite limit of » — 0 only high-momentum modes propagate around the
cylinder, so that we effectively see the massless UV limit of the given scattering
theory. It is known [19, 20] that

é0) =é=c~12d,, (43)

where ¢ is the central charge and d,, the lowest scaling dimension of the CFT
describing the UV limit of the given massive QFT (for a unitary CFT ¢ = ¢).

In sect. 5 we will see that in addition to ¢, the small-r behaviour of é(r) allows
one to determine [21] the scaling dimension of the conformal field by which one
has to perturb the UV CFT to obtain the massive QFT in question.

We now turn to the study of ¢(r). From eqs. (35), (41), and (42) we see that ¢(r)
is given by

3 " 2 !
ara== b ] do L (8.r)m, rcoshé. (44) !

@)= B

The larger-r (low-temperature) behaviour of é(r) can be readily determined

because it is basically just that of a free theory with the same mass ratios as the
interacting theory. Namely, in this limit we have

€,(0) =nrir, cosh# + Ofe '), (45)

where the Ofe ™) correction 1s understood to possibly include powers of r. This
implies that as r — =

6 n ~ )
éry=—r ) 151uf d@ cosh ge "M+ Oe 7))
0

R
ks

a=1

6
= —r Y m,K(m,r)+0(e ). (46)

-
2
a.m, <2

T

where again. Oe ™*’) is meant to include powers of . and K (1) is the modified
Bessel function of order one. 1t is possible [21] to work out the next correction o
the behaviour (46) (at least for the perturbed Yang-Lee CFT). but further
corrections are difficult to calculate explicitly.

Let us now discuss the small-r behaviour of é(r). We explicitly evaluated
¢ = ¢(0) in ref. 3] for all purely elastic scattering theories considered in this paper
(and. in addition. for the corresponding nonminimal S-matrix theories). As r — 0
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the €,(8) become essentially constant in the region —In(2/r) < # < In(2/r), while
growing exponentially for [6] > In(2/r). Calling the r — 0 limit of these constants
€,. we see from eq. (34) that they are determined by

n

€= L N,In(1+e )= Y N,L,. (47)

b= h=1
where we introduced the symmetric matrix N by

« df Lo ‘
Afrm = _f TT:';M_'(H) = - ﬁ(ouh(I) § bu.h( _u)) =

(1—lal)sgna.

GEA L A
(48)

There is always a unique real solution to eq. (47) for the ¢,. [Consider the ath
component of this eguation. The Lh.s. is strictly increasing as ¢, mncreases and
independent of the other €,, whereas the r.h.s. is a positive and strictly decreasing
function of all the ¢,, since the entries of the matrix N are positive. So the two
sides of this equation are equal for exactly one set of (positive) {e,}.] We noticed [3]
that the matrix N can be simply expressed in terms of the incidence matrix [ of
the (non-affine) Lie algebra to which the S-matrix theory is related. as N =
H2 - 1)"". (For the A} -related S-matrix theory / is the “‘generalized incidence
matrix” defined in sect. 2.) In particular, the N-matrices have rational entries and
so the e are algebraic numbers, which were given in rel. [3]. There we also found
that ¢ can be expressed in terms of the ¢, as follows:

é= Y é,= L ELle,). (49a)
a=1 =1
where
6 e :
E.(e) =+ ,jdxln(iie*‘)e-?fmuﬁc-*)
' 1),
1
6 L )
= — X 1 +ef (49b)
v

Lie )

Here 1 is the type of the particle 4 as defined in subsect. 3.1, and L(v) is Rogers’
dilogarithm function [38]

' In v n(l—y)
L(,r;z——f d)-l ny . i “}’A (30)
(1]

L= ¥
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Using knéwn sum rules [38] for the Rogers dilogarithm we evaluated the expres-
sion for ¢ for the known purely elastic scattering theories and obtained the values
of ¢ of the CFTs, perturbations of which are conjectured to give rise to the
corresponding S-matrix theories (for the E, -related S-matrix theories we evalu-
ated ¢ numerically. since the corresponding sum rules do not seem 10 be known in
the literature).

Besides the value of &(r) at 7 = 0 one can also evaluate the leading corrections
[21). We will now do so for the Lie-algebra related purely elastic scattering theories
with a non-constant S-matrix. In our calculations it will be important that 2 <y < 4
(cf. table 1 and eq. (2)) for these theories, In perturbations of free theories or the
critical Ising model by a pure mass term. where y = 2, we can explicitly evaluate all
terms in the expansion of é(r) around r = 0. This will be done in sect. 6.

Let us introduce the functions

1
W (B) =y (8,r) = a + —-‘"’”)EU(H,I'). (51)
,

which, by eq. (34) with &, = 0, satisfy the equations

n

U, (B) =m, e+ Z {‘Puh *

b=

d’h i

g) . 52
)@ (52)
Applying r~'(d/dr) to eq. (44) we gel. after an integration by parts and using the
fact that the €, (8. r) are even in 6,

| 38 . 0, (8. r)
—c'(r)= - — dom, e ——
4 ( ) N (/E::] j— - " eé"t"") + 1

(53)

The functions (6, r) are positive for all 8 and » > 0 (their behaviour is described
below). and hence the &(r) are strictly monotonically decreasing functions of r = (.

This expression can be calculated explicitly in the UV limit r — 0. This is
possible for the same reason that allowed the calculation of cl0) in refs. [3.21].
Namely, one can replace the functions €0, ) and 4,8, r) in eq. (53) by suitably
chosen functions €,(6,r) and ¥,(6. r) without changing the r — 0 limit of this
expression. but now allowing one to evaluate it.

Let us define €,(#) = €,(6, r) as the solution of

n

E-”(H) = ;1,!'?‘;‘\]"6" = Z (lil:mfl * [‘/v)((}) > (54)
b=

where L,(8) = In(1 + e~ “®). Define yj,(9) = (6, ) in terms of €,(6) in the same
way that ¢ () is defined in terms of €,(0). € ,(0) and y,(6) differ appreciably from
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€,(8) and ,(8) only for & smaller than 6 = —In(2/r); €,(0) is now (approximately)
constant for all 8 < in(2/r).

The desired replacement is possible because the integrand in eq. (53) is concen-
trated around 8 = In(2/r) as r — 0. The integral /°, d@c 7y (8, r) /(e + 1)in
fact vanishes in this limit. This follows [rom the behaviour of the functions ¥,(8) in
the » — 0 limit. For # > In(2/r) they are equal to 1, e’ up to double-exponen-
tially small correclions, as is obvious from eq. (52). After a transition region around
6 =In(2/r). ¥,(6)=0(c™) for |6 <= In(2/r), where 5 =3/2. There is another
transition region around # = —In(2/r) for smaller 6 the 4,(6) rapidly approach
Krin (1r )™ 7 e® where K is a (model-dependent) constant of order 1. The details
ol the behaviour of the ¢ ,(8) are not trivial to prove; we have checked them
numerically for many scattering theories. It implies that | dée ™" (8,r)/
+ 1) vanishes approximately like 7~

The point of introducing the “tilded™ Tunctions is that the r-dependence of
€,8.0) is tnvial - it just amounts to a shilt in 6. Defining the r-mdependent
functions

,)

V€ (8D

(e as r— 0.

== (1]

E(0)=¢€(6.2) = gd(ﬁ +1n

we see that

. I 2y (@ 2
l,rJ“[ t.r)= (u'f’ T — IIJ"](:‘”(I‘E' — = ) = _-IFT*M(;”(H = i) = } 5 ('ih)
) r r

r 7

Shifting the integration variable # in eq. (53) (with the o, replaced by ) by
In(2/r). we obtain

|
=)
r

3 »n - .
= 32’51,.J’ dge "d,L (B)

[is

-
5
3

I

!

H
Y o, T, (57)
a=1

7

r=0 a1

Note that 4,8, r) falls off like ¢”” for all 8 < In(2/r). This implies that € (0)
and ﬁkl;“(h‘) are Ole”) for # < 0. The r.his. of eq. (537) therefore does not diverge.
i.e. the leading term in the small r-expansion of é(r)is O( ). (The coelfficient of
the r--term is nonzero because the L_,(H) are strictly monotonically decreasing
functions of 18].) This r’-term is in fact expected on physical grounds, cf. sect. 3.
since it corresponds to a bulk term in E,(R).

We now evaluate the expression £, m,T,. To this end, consider [21] the
convolution L (¢, * ﬂ,,X!J). Defining

4,.08)

i

ik
[ 8,0 (67) = 8,,(8) 5,40~ ). (58)
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we see after integrating by parts and using eq. (47) that
Z(%*z )(0) = —e, +~— }jf do'A,,(0—06") 3, L,(6). (59)

Note that egs. (13) and (48) imply that

“ gzn.'}vuh+zv‘p¢l?:‘r,g—lc 8>0

We conclude that

a

" - e n
Y (@ Lp)(0) = —¢, + = Y €T, + O(e™) asf — -, (61)
= ] h=1

(Here we used the fact that 7 < 2 for all theories considered, otherwise e”? might
not be the leading correction.) Note that according to eq. (17) we have

»n Iz}

E e T, = o\, Z I (62)
= h=1

so if we can evaluate the Lhs. in another way, we know what the desired

expression L, /71,7, is.
The convolution we have just been discussing can also be written as

Z ((pﬂ‘ﬂ ) ) = —E‘(I(gj +ﬁ7neﬁ’ (63)

simply by definition of €,(6). Since €,(6) — ¢, vanishes like e (i.e. faster than e)
as 6 — —, we see by matching the e terms in egs. (61) and (63) that #, =
(1/27)L, ¢ VT,, or, by eq. (62),

S 4 2m S S
;Im"t' - W " h".nl (64)
= < Ll‘y‘:\l\)
From eq. (57) we finally obtain
- -~ 3,‘2
élry=c¢~ = +3(r), (63)
TP

where 3(r) is a function of o(r?), which will be studied in sect. 5. Recall that ¢\’

is determined by eq. (14) and the set A,, given in table 1.
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Betore closing this section we should remark on some open problems of the
TBA approach. We will see in sect. 5 by comparison with conformal perturbation
theory on the cylinder that X(r) has a power series expansion in g =+". If CPT
has a nonzero radius of convergence (as widely believed and strongly suggested by
our numerical results of sect. 7), X(r) is analytic in g in some disk around g = 0.
One would of course like to prove this directly within the TBA [ramework.
Unfortunately, this seems to be a difficult - though intriguing - mathematical
problem. There are indications that the first step in proving this is to show that the
€,(6) are analytic in r=e" in some disk around ¢ = 0*. This is quile plausible,
since we know from high-precision numerical results that € (6)=¢, + O(e™) as

@ — -

5. Conformal perturbation theory

Obtaining analytical information about the function 3(r) in eq. (65) directly
from the nonlinear integral equations of the thermodynamic Bethe ansatz appears
to be a very difficult mathematical problem, as just explained. At present, it seems
that the best one can do in the framework of the TBA is to calculate it
numerically. It is possible [21]. however, to get some exact information about X(r)
by using a completely different approach, namely perturbation theory around the
nontrivial CFT describing the UV limit of the massive QFT. This approach is
called conformal perturbation theory (CPT).

In the cases we will consider. the CFT is perturbed by a single relevant spinless
primary field @ of scaling dimension d,, =2 — y (we use the standard normaliza-
tion [39] for &, namely (P(z, 2)P(0.0)) = |z| A criticality on the plane). The
(bare) cuclidean action of the perturbed CFT is

3,:&*;\#135@{5). (66)

Note that A has mass dimension y. We will choose positive A (or positive
imaginary A in the case of the perturbed Yang—Lee CFT, see helow) to correspond
to the perturbation leading to the massive theory in question. This can always be
achieved by a suilable choice of the overall sign of @. In some cases, e.g. the
magnetic perturbation of the Ising model. both signs of A lead to the same massive
theory. This should be kept in mind, even though we will always take A to be
positive in the following.

The action of the unperturbed CFT, H,,, is in general not explicitly known. But
the explicit form of H, is unnecessary anyhow; CPT is possible for the same

* The statement that the €08) of the perturbed Yang-Lee CFT is anulyne in 1 =¢" " close 1o 1=10
lirst appeared i el {21
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reason that one can perturb around a free field theory — we know the exact

correlation functions in the unperturbed theory. Correlation functions in the
perturbed theory are then calculated in the standard way as if we actually had a
functional integral representation for the theory: The expectation value of any

operator A in the perturbed theory 1S

1
(Ay, = —Z—<Aexp[—Ajd2§¢(§)}>0

A

i

N Gt I
7 & ] %4 AD(E) . B(&))y  (67)

with

Z, = (exp[—)tfdch@(«f)b : (68)

Here the {...), denote expectation values in the true ground state of the theory.
created by the field @, of lowest scaling dimension; they can be expressed (see
below) in terms of the usual CFT correlators, i.e. expectation values in the
SL ;-invariant state created by the identity operator 1, which will not carry the
subscript 0. In a unitary CFT @, = 1. and this distinclion is unnecessary.

The relevant perturbations considered in CPT correspond to super-renormaliz-
able interactions. Therefore an arbitrary Green function can have primiite (VA%
divergencies only in finitely many orders of CPT. By the same token, however, in
the expansion around a massless theory IR problems will oceur for all except a
finite number of terms. As is well known. at least from examples (see e.g. ref. [40]
the perturbative IR problems are a sign that the Green
functions of the “true’” theory are not analytic in the coupling (the same reason
suspected to be responsible for the UV problems of at least some perturbatively
non-renormalizable theories). In our cases, where the perturbed theory is purely
massive, the perturbative IR problems are “cured” in the true theory simply by
virtue of the existence of a mass gap which acts as an IR cutoff.

Of course, the renormalization of IR divergencies [40] is not an easy task. so one
would like to avoid it if possible. If one considers only slightly relevant perturba-
tions the IR problems occur only in high orders and one can presumably trust
RG-improved low order calculations (see e.g. refs. [41,42]): this is the same idea as
that underlying the e-expansion. In our cases of strongly relevant perturbations,

and references therein),

this approach of course cannot be taken.
Fortunately, for the quantity we are interested in here. the ground-state energy

E(R) on a cylinder, we do not use CPT on the plane but rather on the cylinder,
whose radius acts as a natural IR cutoff; integrated connected correlators are IR

finite on the cylinder.




:now the exact
tnctions in the
. actually had a
n value of any

|)>()’ (07)

(68)

e of the theory,
¢ expressed (see
1 values in the
1l not carry the
cessary.

iper-renormaliz-
e primitive UV
ten, however, in
for all except a
see e.g. ref. [40]
that the Green
‘he same reason
ie perturbatively
theory is purely
heory simply by

gasy task, so ong
levant perturba-
yresumably trust
the same idea as
1t perturbations,

und-state energy
on the gylinder,
yrrelators are IR

T.R. Klassen, E. Melzer / Thenmodynanics of seattermg theories 6A1

We now show that in the cases we are considering there are also no UV
problems in any order*. In the calculation of the vacuum energy on the cylinder we
will encounter integrated correlators of the form

I" = /d2§] "'d2§n<(pﬂ(ix]lp( fu) (D(él )d,lll _,00)> i) (ﬁu)

where the ¢, are integrated over the (IR regulated in the “time™ direction)
cylinder {¢] Reée€[0,R), Imée(—L /2, L/2)), avoiding regions where the dis-
lances between them are smaller than the UV cutoff ¢. In fact, we can easily
generalize the discussion and consider integrals which show up in CFTs perturbed
by more than one relevant feld:

Jo= [, d%, (b (6L DBLE) - b (E) (). (70)

where the ¢, are conformal fields of scaling dimension d,. Now the umntegrated
fields &, and ¢, ., are located at £,=¢, ., which are both cither outside the
integration region as in eq. (69), or inside i1, a sitwation which s encountered mn
the CPT expansion of a two-point function in a perturbed unitary CFT. In the
latter case the UV cutoff e also prevents the integrated &, from approaching £,
and £, ., too closely. Further generalization to include more unintegrated fields is
straightforward,

In the space of integration variables &,.....
regions where any number m =2, .., n ol the & approach each other (the
remaining ones kept fixed), or where m - 1 approach one of the unintegrated
points £, or &, ., if the latter are inside the full integration region. In both cases,
the condition for UV finiteness is obtained by considering different fusion schemes
(cf. ref. [43]) of m fields &, , a=1..... m, leading to some “fused” field &, of
dimension d,: Let € be the point that the other ones, & . b= 2,....m. approach
(the order of approach being specified by the fusion scheme; if &, or &, _, 1sone of
the & ....,& then § is &, or &,.,). We change the integration variables & .
b=2.. .m byletting § =¢ +ef . where the new variables are now restricted
by the UV cutoff to obey lg’,'_l > 1 and }{.',h—{,‘i > 1. for all b # ¢ (additional
restrictions may arise from the fact that in a two-dimensional space there are not
many directions along which points can approach each other!) Using the transfor-
mation properties of the CFT correlators under local scaling by 1 /e (around £, ),

¢, we have to consider the UV

* In what follows we use the language of CPT on the cyhinder. which will be needed for explicn
calculations later on in this sectiom However. since the UV behaviour is independent of the global
geometry, the condition for the absence of UV dvergencies given below is just as iriic on the plane
One should however realize that IR divergencies on the cylinder as & — - pajvely appeir as UV
divergencies at z = () when transforming to the plane via z = expl - 2wi£/R).
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we see that the contribution to J, from the region considered behaves like € to the
power 2(m ~ 1) = L7_,d; +d;, multiplied by the correlator of the field ¢, and the

remaining n + 2 — m fixed fields. We conclude that J, is UV finite if the following
condition is satisfied:

2

Y v >y (71)

a=1

for all possible ¢, that can be obtained by fusing any m fields ¢, (m = 2....,n)
and in addition are intermediate fields in the conformal blocks contributing to the
full (n + 2)-point function in the definition of J, (namely, &, can be fused together
with the n + 2 — m remaining fields to give the identity).

Going back to the integrals [,, eq. (6Y), we immediately see that in the
perturbations of unitary CFTs (where y, < 2 and @, = 1) they are UV finite for all
n provided that y > 1. This is the case for all the unitary theories we consider,
except for the thermal perturbation of the Ising model where y = 1. But even in
the latter case only the first nontrivial integrated correlator I, is UV divergent, all
higher connected 1, are UV finite (cf. ref. [29] and sect. 6). For perturbations of the
non-unitary models M, ,, . ;. where y > 2, @ =¢, , and ®, =&, ., we have to
check that the condition (71) is satisfied when Fusing m fields @. This is indeed the
case. in facl, it is a consequence of the following more general result that is easy to
verify: Any allowed fusion ¢, < b, — &, in the CFTs M, ,, . ; satisfies y, + ¥, ~
y, > 2. Summing up the relevant inequalities of this type along any “fusion path”
of m fields @ we get my > v, + 2lm — 1). which of course implies (71). In these
CFTs there are no UV divergencies in gny integrated correlator,

There is an important difference between CPT and perturbative expansions
around free field theories: It is well known that, at least in bosonic theories. the
perturbation expansion around free fields diverges even when IR and UV cutoffs
are present, due to instantons. CPT on the other hand is expected [21,44] to have a
nonzero radius of convergence in such a situation (in the cases at hand even
without the UV cutoff, of course).

The intuitive reason [44] for the benign behaviour of CPT is that a relevant
perturbation of a CFT is not expected to worsen the asymptotic behaviour of the
functional measure for large fields. This is clear, for instance, in the Landau-Ginz-
burg representation [45] of unitary minimal models. In the case of ordinary
Rayleigh-Schrodinger perturbation theory in guantum mechanics the analogous
results are of course rigorously known from the Kato-Rellich theory of regular
perturbations (see e.g. ref. [46]). Consider, for instance, the perturbation of a
hamiltonian H, = p> -+ V,(x) by a potential AV(x) which does not grow faster than
V,(x) for large x. Then for sufficiently small A a discrete nondegenerate eigen-
value E, of H, gets perturbed to a unique eigenvalue E(A) of H, + AV, which is

analytic in A.
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There is also a truly field theoretic example involving only bosons where 2
perturbation expansion around a free theory is known (o have a nonzero radius of
convergence, even without any cutoffs. The example is a massive free scalar field &
in 1+ 1 dimensions perturbed by an interaction term of the form Acos(ed + 8)
{the massive sine-Gordon™ model). It has been shown rigorously [47] that if the
unperturbed boson has a sufficiently large mass, the perturbation series in A is
analytic in some disk around A = (. The intuitive reason for this is the same as
mentioned above: The interaction is small compared to the mass term for large
fields.

We will not attempt to prove here analytically that (IR cutoff) CPT has a
nonzero radius of convergence. However. for the vacuum energy E(R)of a purely
elasuc scattering theory on a cylinder of circumference R. our numerical results in
sect. 7 indicate that this is indeed the case. Be that as it may. we know from our
earlier remarks that

+

W E(R lim — ¢ s deae]) —Br-"C
= — — \ - L b - S P
E_,,\Q;\z-.ﬁ Ca( R) Jim - 11<<.KI1 Ajm £ (é)]>[I () 6R (72)

is well defined perturbatively. In the above expression we have subtracted a bulk
term, whose coeflicient B(A) should be chosen to cancel any bulk contribution
arising from the first term. We have also included the “Casimir term™ - ¢ /6R in
E(R). so that at A =0 (where the first two terms on the r.hs. vanish) we
reproduce the value of the vacuum encrgy on the cylinder which corresponds to
vanishing vacuum energy on the infinite plane. Expanding the expectation value in
eq. (72) in powers of the dimensionless variable R'A we obtain. using translational
invariance on the cylinder,

e 7
E(R)==— -B(\)R- — Y C (R*A)". 73
W R) oz B hR”}; ARA) (73)
where
(__1)” L ; n—1 .
Co=12——R>"" [ <®(0) [T(&) % n.com (74)
-— H! oyl 1=

and the subscript “conn” signifies that the correlators are connected.

Explicit calculations of the coefficients C, will be deferred to the end of this
section. Here we just note the consequences of nontrivial symmetries thal are
present in all the unitary CFTs whose perturbations we consider. [n all these cases
the perturbing field & belongs to a subalgebra of the operator algebra which has a

4, symmetry, and @ is odd with respect to this symmetry. (Except for the

T= -%&lm\, - {f&i—%’ ~RLAN
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EY"-related model, this fact is understood by observing that the above £ ; symmetry
reflects the Kramers-Wannier duality of the corresponding lattice model; @ is the
energy density operator which is coupled to the temperature, and therefore is odd
under this duality. In the E{’-related case, @ is the spin operator of the Ising
model and the Z, symmetry is just the spin-flip symmetry) It follows that
correlators of an odd number of @’s vanish identically, and hence €, = () for odd n
in all the models related to the untwisted affine algebras. This is not the case in
the A3)-related models, since the fusion rules of the unperturbed non-unitary
CFTs M, ,, ., imply that the correlators in ¢q. (74) do not vanish for any n.

So we see that in the unitary as well as non-unitary cases the CPT prediction for
the ground-state scaling function ¢(r) is

§ o e "
é(r)y=¢+ —B(OR + X C(RA)", (75)
. n=1
\,s = Q -)\¢
with ¥ defined in eq. (2), and
(-;n _ Ci, {unilary.cahcs) (76)
C. ( non-unitary cases) .

Comparing with our final result for é(r) from the TBA, eq. (63). we can conclude
three things:

mi
B{X) = = ?ﬁ,[, . (77)
r)y= Y a,(r)", for some a, € ®. (78)
n=1
and
@ T =G A for all n. (79)

1t is not surprising that we find a nonzero bulk term in the perturbative part ol
the ground-state energy as calculated by CPT, because, after all, we are expanding
around a conformal theory in which fluctuations on all length scales contribute to
the energy. In the corresponding statistical mechanics system this bulk term.
proportional Lo?\j"‘, of course signals the phase transition: In the unitary cases it
leads Lo the divergence of the “suscepubility” (second derivative of the free energy
with respect to A) at criticality; in the non-unitary cases already the “magnetiza-
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tion™ (first derivative of the free energy with respect to A) diverges. Note that it
would have been extremely difficult 10 obtain the bulk term coefficient B{/\) within
CPT alone: We would have had to analytically continue the power series in cq.
(73), which (for fixed A) converges only for small R. to large values of R and find
the term proportional to R. But in most cases it is already quite difficult (see
below) to calculate the second coellicient in this power series — even numerically.

In the TBA framework it is not yet possible to prove analytically that 2(r) has a
power series expansion in r' (it can however be checked numerically at least for
the first term, as we will sce). But once we know this from the comparison with
CPT. it is much casier to use the TBA 10 caleulate the a,, than o obtain the €, in
CPT. Sv our approach will be to make several checks verifying the consistency of
these two methods and then use the TBA to obtain further results. The first six
coefficients a, will be extracted from a numerical solution of the TBA eq. (34) (the
details will be discussed in sect. 7). In particular, a, can be evaluated to very high
accuracy. Eq. (79) for a# = 1. with the exact value of C_, (obtained analytically
below). then allows us to accurately determine the coefficient K.

A=wmy . (80)
relating the perturhing parameter to the lowest mass in a given theory. Consistency
requires

C,=a,x """, (81)

for # > 1. in particular. We will check this for n = 2 in the A2-. A. D" and

(77) E{-related cases (see below and sect. 7).
Tu conclude this section. we turn 1o the calculation of the coefficients C, using
the CPT approach. When calculating mtegrals of correlation lunctions in the CFT
(78) It is more convenient to work on the punctured plane, rather than the cylinder.
This can be achieved by performing the conformal transformation z = ¢~ 27¢ 'R
for which we know how the critical correlators transform. Eq. (74) then yields
(79) C - ]2{—1) i H[ (e . 17
n' pli=i (27|z,])
erturbative part of
. we are expanding n=1
cales contribute to X( @y(cc.x)d(1.1) [T@(z,.3,)®,(0.0) . (82)
1 this bulk term. it wnn

the unitary cases il
+ of the free energy Note the extra factors |z,| ¥ in the integrand which are absent in CPT on the
iy the “magneliza- plane.
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For the perturbed unitary CFTs we find [42, 48]

G, =Cy=6(2m) Y [dzlzl i -2 T

=3027) Y1 ay)v(y - 1) (unitary cases) , (83)

where y(s)='(s)/I'(1 = s). (The integral converges for 1 <y < 2, which is the
case in all the models considered in this section.)
In the non-unitary CFTs M, ,,, . the first nonvanishing cocfficient is

¢, =C, = —12027)' "Cop0, (non-unitary cases) , (84)
where the OPE coefficient is given by [48,49]
y? . 2 :
3 2n+3 2n+3 (85)

(er.dn.n“) L

4 2n = | 2n— 3\, 2n ’
Y,zn+3)?( zn+3)’( 2n+3)T(zn+3)
is real for n > 1, but purely imaginary for n = 1, indicating that

Note that Cp g,
the first model in the A2 -refated family, the perturbed Yang-Lee CFT. is

somewhal special.
The sign of Cy e,

as the sign of any other nontrivial OPE coefficient, is only

determined after fixing the ambiguity in the overall signs of conformal ficlds. As
indicated earlier, we have chosen the signs of the fields so that perturbations with
positive A (positive imaginary A for the Yang-Lee CFT) lead to the massive
theories considered.

As an example of the work involved in cal
¢ of the D} -related theories. (For n =3 the following calculation
Al)-related theory, because the latter theory 18
D_related cases are relatively easy.
{ those of a free boson

E/\/r_:, 50 that

culating the next coefficient C, we

consider the cas
gives us the coefficient C, of the
identical 1o the DY -related theory [3].) The D}
as the critical correlators involved can be written in terms O
@(z. 2) (with no “screening’): namely. @(z,2)= V2 :cos ol z,

conn s t=r<ks<d

4
(ﬂtb(z;"?;)) =X 11 lz,“z,(z""—(lzl—zzlIz-z—z(xi)_"‘"'
F=1

~(lz, = 23l 1z, ”Z4|)_4'M = (lz, -zl 1-"-'2_23!).%”:’ (86)
s,= + 1, such

where s, = 2s,5,/n and the summation is over all s =(s,.5,, 55 5),
- z,]" in a double

that ©'_,s, = 0. As in ref. [29], we expand [actors of the form |z,




$), (83)
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binomial series, and perform the integrations term by term using polar coordinates
for the z,. The integral for C, = C, is then replaced by the following sum, which is
gasier to control numerically:

3(217] -4 +8B/n Y\ Z/( L l)-n,~r“»m;’-r;#m..-u,_‘

i

C, (D) -

s

XA (my,n ... omg,n,)

1y
my + s ot »)
: n

By 2

L
+m,‘+~] (h‘h‘!-)7'l;+l711+ﬂ!;-l-—+S'u)
" )

X{my+ms

tem o) £ (T (ks 1) Sy

n,

Here X' runs over mi,, #,, my, i, 0. migong, m,. i, from 0 1o =, ignoring terms
whose denominator vanishes (this reflects the cancellation between the IR non-
integrable terms in the full and disconnected correlators). and

Alm,.n, ... m,. N

SHEL R 137y SN S0\ S ) I SR WA= e

= (nl} )( ni; )(m“ nlw] n;i | “‘ m, H n, ](mJ ( n-j ]( mj,)( n:)‘ (83)
with =y —my R, —mo+Ens, N, =m0, 0, - iy N and n,=m, +
~ng +m, —n,. We evaluated C.(D}') numerically for n = 3.4.5,6 by truncat-
ing the sum ¥’ above common values N < 14 for the 9 indices of summation, and
then using rational extrapolation [50] with respect to N~ with o chosen to give
the hest fit. The sum in the last line of eq. (87) was evaluated separately to a much
higher accuracy. (The final results for € , are given in table 5 of sect. 7. where the
error estimates reflect deviations between different extrapolations.)

m

S

6. Free bosons, free fermions and the Ising field theory

If the derivatives of the phase shifts of an S-matrix theory vanish, one can
trivially solve the TBA equations and obtain explicit integral representations ftor all
thermodynamic quantities. Not only free theories with trivial S-matrix ~ = 1. but
also theories whose S-matrix differs from the trivial one by some scattering matrix
elements that are equal to — 1 have constant phase shifts (and this is the only
other possibility allowed by unitarity, eq. (5)). From the TBA point of view, these
latter theories are therefore equivalent to free theories. i.e. they have the same
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infinite-volume thermodynamics. To avoid repeating the phrase “theories with
constant phase shifts”, we will refer to such S-matrix theories as generalized free
theories, for short.

For free theories it is of course not necessary to use the TBA to calculate the
thermodynamics. It is however quite instructive to do so for (generalized) free
theories, in particular because one can rewrite the ground state scaling functions
¢(r) of these theories to explicitly exhibit their singularity structure. As a bonus, we
will see that by combining these results with those of refs. [28, 29], we can obtain
VEry compact expressions for the partition functions of free massive bosons and
fermions, and of the Ising field theory, on the torus.

Recall that the /Ising field theory [51] is obtained by a massive scaling limit (from
above the critical temperature) of the lsing model at zero magnetic field. The
theory contains a single (bosonic) particle in its spectrum, corresponding to the
order variable & of the Ising model, and its S-matrix is simply §(8)= — 1 (the
A'l’-related S-matrix theory). lts infinite-volume thermodynamics is therefore
equal to that of a free fermion. since both theories describe a free fermionic type
particle from the TBA point of view. We wili explicitly see however. that its
finite-volume thermodynamics differs from that of a free fermion - as it should.

Consider the purely elastic scattering theories of a single free fermionic and a
single free bosonic type particle. With the derivative of the phase shift vanishing,
the solution of eq. (34) (a1 zero chemical potential) is simply

() =rcosh#h, (89)

in both cases (we drop the subscript a. as there is only one particle species in each
case). As expected, in generalized free theories the “dressed” one-particle energy
€(8)/R is equal 10 the “bare” one-particle energy m cosh 6. Denoting the ground-
state scaling functions é(+) of free fermions and bosons by ¢,,»(r) and cy(r),
respectively, eq. (44) then reads

6 =
Crpooplr) =+ “7/ dé r cosh 6 In( ] drg — AEBIE (90)
g —Red)

In agreement with the general discussion in subsect. 3.2. these expressions are - up
to a factor —7/6R’ - just the free energies (or pressures) of ideal relativistic
Fermi/Bose gases at T = 1/R and u =0,

We now rewrite these expressions to explicitly exhibit the singularities of the
functions ¢, ,, (7). First we expand the logarithm in eq. (90) in powers of e ~"csh#
and integrate the resulting sum term by term. This gives

(FD)
k

6r

Cpulr) = —3 Z

7 =

K\(kr), (91)
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where K(x) is a modified Bessel function. Taking first the r — 0 limit. we obtain

i 6 Z (F1*! 1
Ty K i
Next, using [xK (1)) = — A (). we find
1 d QU
Th nalz) = - = X (T K, (k) . (93)
r dr e =y
[This can also be obtained by first differentiating eq. (90) with respect to r,
d 6r
dﬁ't(l '*(J } ol = __/ -Lusiln Q (()4)

from which the monotonic decrease of the ¢, ,, () with 7 is manifest.] These sums
of transcendental functions are of Schlémilch type and can be rewritten as sums of
rational functions using formulas 8.526(1-2) of ref. [32]. A simple integration then
gives

| 3r- 1
Cy Y =5 — >33 In:+~+ln.. -~ Ye
- a—_l_-’_,Ti—zkﬂ:‘h—— 95)
i El[‘/( P k" ( ) 2(2k Hu’ (
and
| 3r 3r° : ] .
cylr) = P n;+§+ln4-rr—-y5}
[ T -
- E(]/(jku) +r? —Zku*T-) (96)
LU ey

where yg = 037721366 .. is the Euler—Mascheroni constant. As expected. these
functions do not have any singularities for physical, that is positive, values of 7.
There is however a branch cut starting at r= () coming from the r? [n(1/r) term.
One can trace its origin to the logarithmic term in the free energy of the
corresponding lattice models. Presumably more representative of generic perturba-
tions of CF’Is are the square-root singularities of the infinite sums at negative

values of - (we will return to this point in the sect. 8). The radius of convergence
of these sums. r,,. is determined by the k = 1 term, namely ry, = in the fermionic.
and r, = 2% in the bosonic case. Expanding the sums around r = 0 one obtains the
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following expressions:

1 3r2 1
c,/z(r)=5—2—wzln—r—+§+ln7r—yE
- - rz n
—42( i )(1“22"")5(2'1‘“)(—7) . (97)
n=1\n+1 T
3r  3r?
c,,(r)=1—;_—+2—‘”2ln7+%+ln417-—yE

—2%( 3 ){(2n+1)( r'z) , (98)

n=1 n+1 4

valid for |r| <r,. Here {(s) is the Riemann zeta function.

We now discuss the partition functions of generalized free theories in a finite
“volume”. The above results, valid only in infinite volume, have one advantage
over other methods of calculating partition functions, namely that we know the
explicit small- and large-r behaviour of ¢, ,, ((r). One can therefore use the above
results, trivial as they may seem, to supplement other approaches which provide
most - but not all - information about the partition functions of generalized free
theories on the torus (we have now switched 1o a euclidean description).

Ferdinand and Fisher [28] evaluated the partition function of the Ising model on
an N, X N lattice in the scaling limit where Ng — o with ¢ =N, /N, and
T~ NJ{T-T)/T, fixed (T, is the critical temperature of the Ising model).
Unfortunately, their calculation of the (logarithm of the) partition function was
restricted to a power series expansion in 7 with a finite radius of convergence
{corresponding to our small-r expansions of ¢y 2.0(r); in fact. their 7 equals our
r/2). The large-r behaviour of the partition function therefore remained unknown.
In particular it was not possible to normalize the (scaled) partition function. see
below.

Saleur and Itzykson [29] used {-function regularization of path integrals to
calculate the partition functions of generalized free theories in finite volume. Their
final results depend on the mass scale one has to introduce to perform (-function
regularization (although this mass scale does not appear explicitly in ref. [29]). This
mass scale has to be fixed by a normalization condition on the partition function.
As discussed in sect. 3, it is natural to require that the ground-state energy £ ,(R)
of the theory on a cylinder of circumference R vanish as R — =. Such a require-
ment could not be implemented in ref. [29], because {-function regularization gave
the partition functions in a form, which, although well defined for arbitrary tori.
made it very difficult to extract the behaviour when the length of one of the cvcles
diverges. Since the ground state scaling functions ¢, , ,(r) implement the above
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normalization condition, one can fix the mass scale by comparing the small-r
expansion of these functions with the results of Saleur and ltzykson. (It turns out
that this amounts (o replacing the area 4 of the torus in their expressions by the
dimensionless quantity m°4/e.) Their results can then be compactly written in
terms of the ¢, ((7), as follows.

We restrict their general results to tori of perpendicular cycles L and R; the
expressions for arbitrary tori involve no qualitatively new element, they are just
more lengthy. The huilding blocks of the partition functions can be written in
terms of the path integral for a free Majorana fermion with various boundary
conditions. They now read simply

D, s(mlL,R) =e fomlat/ok T ([ —§ e~ hedri/RY, (99)

ned g

where a.B {0, 5} label the boundary conditions, periodic or antiperiodic, in the
L (“time™) and R (“space”) directions, respectively, 5, = ¢2™' and

da=d) AV 100
e (] o

are just the energies allowed for a free particle in a box of length R. The partition
function of a free massive boson (periodic real scalar field) is

Z(miL . R) =Dgi(miL R) =eT-h VSR TT (1 —e-tedn/®)™"  (101)
that of a free fermion reads
Z(miL.R) =Dy (m|L R) =e <0 VoR T (] pe-trar/Ry  (102)

nef+!

and. finally, that of the Ising field theory is

Zye(mIL.R) = 3(D \+Dy . +D. , - D, ,)(mIL.R)

wl
= jexp R

}({ ]—l {]+e~ff_,’ﬂjc..l’))+ I—[ (l‘ef(l_/ﬂn,,(:))

Z /2 ned +1/2
arl

T 6R

(colr) +r.l(r))]

l—] (1 +cfu./r\>),"u>] _ ]"I {1 . e"”“"”""”)”_ (“n)
n=1 nes



672 T.R. Klassen, E. Melzer / Thermodynamucs of scatiering theories

Note that these partition functions have exactly the same form as their well known
massless limits, except for the “‘scale dependent central charges” Cﬁ()') and the
energies ¢,(r)/R appropriate to massive {ree particles. Although it is not manifest,
these partition functions are invariant under exchange of L and R. as their
derivation shows [29].

We should comment on the fact that we have subtracted the last term D, in
Z,, not added it as in vef. [29]. This follows from the results for the partition
function on the lattice [28,52] (it is not possible to deduce the correct sign by
requiring modular invariance as D,, , is modular invariant by itself, nor by looking
at the massless limit of the partition function. since D, vanishes then). Further-
more, only in this way can Z,4 be interpreted as the partition function of a
massive QFT. To see this latter point, expand the products in eq. (103) to wrile
Z = in the form

o

Z(L,R)=€_[‘I“‘(R) 1 + Z e LOE(RY-EQRY . (m4)
k=1

where E,(R) is the energy of the kth excited state (in order of, say, increasing
energy) when the theory s restricted to a periodic space of length R. If the theory
has a mass gap m, the first contribution to the sum. E,(R) - E(R). is the
finite-size corrected mass m(R), which should approach m exponentially fast as
R — =, Indeed, from eq. (103) we read off

] K {((2n + l)r))

_ 2”[1  dien, S5 (Vi2n— 172 402 47 \/255#‘*?)}

,_\
=
)
+
e}
01«
————
=
5
+ tol—

W

lg)(l = g AU 1)(i)2“)
(105)

the last expansion valid for |r| < 7. We also see from eq. (103) that the last two
terms in Z, contain a whole “one-particle mass shell of states” appropriate to a
boson. i.e. states with energies ¢,(r)/R. n € 7 (up to the same exponentially small
corrections by which m(R) differs from m for large r). Recall {33] that in the
conformal limit m =0, E, — E,=2wd, /R, where d, is the scaling dimension of
the field creating the state k. Here d, = 1 =d, . so we obtain the expected result
that the (bosonic) one-particle state in the Ising field theory is created by a massive
analog of the spin field o of the critical Ising model.
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When Z, is written in the form (104), the sum of the first two terms in eq.
(103) contains only states with an even number of particles (the Z,-even vacuum
sector), whereas the difference of the last two terms contains only states with an
odd particle number (the Z,-odd o-sector). The “construction” of Z from the
fermionic building blocks D, , is therefore a massive analog of the GSO projec-
tion [54] in string theory.

For r = Rm > 1 the Bethe ansatz equations (24) (with L replaced by R and
S(4) = — 1) imply that the energy of a multi-particle state in the odd (even) particle
sector is given by a sum of terms of the form #,(r)/R with n€ Z (ne I + ;). This
is indeed what we see in eq. (103). Furthermore, in the even-particle sector there
are no small r corrections to these “free encrgy levels”, and in the odd-particle
sector they are universal - i.e. independent of the number and momenta of the
particles — and given by m(R) — m. The latter quantity should therefore be inter-
preted as the “ground-state energy” of the e-sector measured with respect to the
vacuum (although, to be sure, this “ground state™ is of course not part of the
spectrum of the massive theory). All other features of the spectrum are casily
understood in terms of the massive free Majorana lermion underlying the Ising
field theory, quite similar to the massless case.

7. Numerical work

Only in the case of the (generalized) free theories discussed in sect. 6 can the
caleulation of the complete thermodynamics be reduced to guadratures. For a
generic purely elastic scattering theory one has to solve the nonlinear integral
equation (34) for ¢, 7. ). which can only be done numerically (except for
r=10,%). In our numerical investigation of the thermodynamies ol purely clastic
scattering theories we concentrated on the ground-state scaling function ¢(r) as
this allows us to obtain several quantities characterizing the massive scattering
theory, and. in particular, its UV limit.

From our discussion of conformal perturbation theory in sect. 5 we know that
the function X(r) in eq. (65) should be considered as the “perturbative part” of
¢(r). The small-r behaviour of X(r) determines ¥ and therefore the scaling
dimension of the perturbing field. We ean then fit X(r) to a polynomial in ¢ =r°
to obtain the first few coefficients a, in eq. (78). From the a, we are able to
calculate the coefficient x relating the perturbing parameter A to the lowest mass
in a given theory, ¢gs. (79) and (80), and estimate the position g, and form of the
singularity of 2(r(g)). The reader not interested in details of our numerical work
can go directly to tables 2 1o 6, where important final results are summarized.

To calculate é(r) we have to numerically solve the nonlinear integral equation
(34) for ¢ (6, r, p = 0) with fixed r, and then (numerically) perform the integral in
eq. (44) determining ¢(r). Suppressing the r-dependence, let us write eq. (34) as

€.(0) =F,[{e.(0)}]. (106)
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In the case of the boson gas with a repulsive d-function interaction treated by
Yang and Yang [36]. their (nonrelativistic) analog of this equation was proved to be
solvable by simply iterating it. €'~ '"(8) = F,[{}"(0)}], e (6) = lim,, _,, €"%(#), using
as initial €"(#) the nonrelativistic analog of our r#, cosh 6. The €,"(8) then in
fact monotonically decrease (pointwise) towards the unique solution. In our case
with attractive interactions, the phase shifts in eq. (34) have a different sign
compared to the repulsive case, and it is in general not possible to solve eq. (106)
simply by iteration, no matter what initial €{(6) one uses. Except for the first few
models in the A~ and A} -related S-matrix theories the iteration does not
converge for values of r smaller than about 1 (depending on the specific model),
but rather leads to a “2-cycle” with different limits for even and odd n. The
problem can be easily seen by looking at the special values €,(6=0) as r — (.

These values were called €, in sect. 4 and are determined by

n

e, =fle)= Y N, In(l+e ). (107)

b=

Although this equation has a unigue real solution (cf. the remarks in sect. 4), one
cannot solve 1t numerically by simple iteration, because the matrix of derivatives
d, fo= =N,/ + 1) has. in general, some negative eigenvalues of magnitude
larger than I at the unique fixed point {e,}. This is the origin of the “2-cycle”
property mentioned above.

This problem is of course easily circumvented. Consider the equation

]

Gu :j;:“‘/“(e) = Z (‘!\/Iu/)fb(E) + (l B All)ubeh)? (“)x)

h=1

where M =(M,,) is an invertible n X n matrix which can depend on the €, and 1
is the identity matrix. Clearly this equation has the same solution {e,} as eq. (107).
However, for suitably chosen M the solution can be obtained by iteration,
elnT D = fIM ety A simple choice of M leading to a convergent iteration is
M = _%IL. One can however make an optimal choice of M by requiring that the
derivative matrix "*F,,f,i'm vanish. Neglecting the derivatives of M with respect to

the €, (which vanish at the fixed point), this leads to the optimal choice

M=(1+N)
where

E NI/)

¢
ab

—— (109)
g

Compared to the simple choice M = %]I, this M cuts down dramatically the
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aumber of iterations required to find the solution of eq. (107) to a given
accuracy ~ by a factor of about 10-20.

Exactly the same method can be used to iteratively solve the integral equation
(106) for the €,(0). We discretize the @-axis (in steps ol Af) and replace the
integral implicit on the r.h.s. of eq. (106) by a sum. Since the €, (#) are symmetric
functions we only have to consider # = 0, and since ¢(r) depends on €,(6) only
through L (8) = In(1 + e ““") we can restrict ourselves to ¢ < 8,,,,. where L (6)
is not negligible (6, can fortunately be predicted beforehand, since e (6) =
rm, cosh 6 for # much larger than In(2/r)). We know that for small » the €,(#) are
close to e, in most of the region [8] < #, . so that the choice of M given by eq.
(109) with €, = €,(6) is a good one. As r increases the choice of M becomes less
important, and from some r-value on (which depends quite strongly on the model)
no advantage is gained by using £q. (109) for M instead of M = ;1.

Depending on the model and the value of r. we lound it necessary to usc
Af = 0.016-0.05 to achieve double precision accuracy. Solving eq. (106) succes-
sively for increasing (or decreasing) values of # it is convenient (o use the solution
€"X6. r) as the ansatz €6 + Ar) for the next r-value. For the first -value we
used €™(#) = i1, cosh @, if r>e,. For smaller initial values of r we used as an
ansatz a function interpolating between n#, cosh @ tor [8] > In(2/r) and the
constant e, for small . With these ansétze a maximum of about 60 iterations was
sufficient to obtain ¢(r) to double precision accuracy in all models for any value of
r. {For very small and in particular for large r. a much smaller number of iterations
is required.)

We calculated ¢(r) and its perturbative part X(r) for r =0.0-2.0 in steps of
Ar = 0.01 for the smallest models. up to Ar = 0.025 for the largest models we
investigated, and with somewhat larger r steps for r = 2.0-15.0. For the physically
important case of the EY-related S-matrix theory some of the calculated é(r)
values are shown in table 2.

We usually also calculated é(r) for a few very small r-values. Using the ratio of
N() for two small r-values we estimated v. In all cases we obtained the value
expected from CFT (table 1, and eq. (2)) to high accuracy. as comparison with
table 3 shows, (We have checked that the tiny deviation {rom the exact value is
entirely due to a combination of numerical ervor in é(r) and the fact that v is
extracted from finite, not nfinitesimal. values of r.)

We then used standard fitting routines {50] to fit 2(r(g) =L _a,¢" 0 a
polynemial in g =", vbtaining 6 of the coefficients a, to at least 2 digits, with
successively higher accuracy for smaller n. (In the fitting we do not let vy be a tree
parameter. but rather use the theoretical value, to obtain the «, as accurate as
possible.) 1t is difficult to obtain the higher a, accurately because their magnitudes
decrease rapidly with i (by roughly one order of magnitude from @, 10 «, _ ). and
for the fitting one can only use r-values quite a bit smaller than the radius of
convergence of X(r), which (sce table 6 below) turns oul to be smaller than 3.0 in
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describing the scaling limit of the 7 = T, Ising model in a magnetic field.
The error in the tast digit given for (7)) is at most 2

Numerical results for the ground=state scaling tunction ¢(7) of the E{-related S-mairix theory,

c(r)

r

ctr)

0025
(0.450
0075
(0,100
0.125
0.150
0.175
0.200
0.225
1250
0.275
0.300
0.325
10.350
0,375
Q.400
0,425
0.450
0475
030
0.55
.60
0.65
0,70
0.75
080
0.8%
0.9n
.95
10
1.1
L2
i3
]
1.5
1.6
1%
1.8
19
2.0

(LS T R CE R T S )
e e -

[PURN PRV Y
Wb = D

4.99026331494280 % 107!
4.99705463734389 x 10~ °
4.99137745094963 x 10!
4. 98823708366504 x 107!
4.98164013110821 < 10!
4,07359474791394 x 10!
4.96411036991531 x 10
4.95319769399916 x 10 '
4 940R6862928673 < 10!
4.92713625608369 % 10"
4.912014790139967 x 10"
4.89551955257350 x 10
4.87766693897389 x 10~
4.85847439601564 x 10"
4.83796039390923 x 10
4.81614441368206 x 10!
4,793040690500478 < 10!
4.7686R928513721 x 10~
4.74300390683407 x 10!
4.71628404012539 > 107}
4.65911837798670 x 10 !
4,50730507056175 % 10!
4.53133378446928 x 107"
4.46116124267222 x 107!
4.38711944036403 x 107!
4.30946022694608 x 10!
4.22844519254401 x 10~
4.14434457231968 x 10!
4.05743604488329 x 10"
3.96800342745280 x 10!
3.78272335483171 x 10!
3,.50084 195897229 x 10 !
3,39469629401242 x 10"
31965681 1102667 x 10
2.99862888891790) < 10~
2.80288817111835 x 107!
2.61114884078821 x 10!
2.42497252776712 % 10!
2.24563739146455 x 107"
2.07422923049108 < 10
1.91 144548068371 = 10!
1.75781043829842 % 10~
1.61359918347485 x 10~ F
1 .A788K727315849 x 10!
1.35358330353019 > 10~
1.23746180823480 x 10~
1.13019452151614 < 10!
103 137866044278 % 101
9.40561464929706 x 10°°
8.57260716570693 = 107
7.80681313371979 % 102
7.11228210605372 x 101
6.47516167162642 x 107

314
i5
16
3.7
38
i9
4.0
4.1
42
4.3
44
45
4.6
4.7
4.4
49
5.0
32
5.4
56
58
6.0
fh.2
6.4
6.6
(83
7.0
7.2
7.4
7.6
7.8
R0
8.2
8.4
8.6
88
9.0
9.2
94
9.6
98
10.0
0.5
11.0
1.5
12.0
12.5
13.0
135
4.0
14.5
15.0
15.5

5 8037678062673 x 102
5 3636334 1BAP8RL x 107 ¢

4 88053822691252 =

4.039911381 10232 x
3.67527700508491 <
3.34046830588822 <
3.04158216805058 x
2. 7664954 14108395 %
2.51714409580728 x
2.28992) 23033228 <
2.08324896510729 <
184952701 1496462 x
1.72429257623807 %
1 S6RTISTIII5159 «
142731 763438564 x
1. 298A4305021 782 x
10751 1126086937 x
B.O0111763998775 x
7369781 74473723 x
A 10203326568284 x
S5.0S237IR2434778
4.18319533612114
1 46341882149619
2.86733577979935
23736801 0456008
L964R5I2TIM A
1,626 28730899834
1.3459207 3600 49
1113763446101 1
9.21541152635297 %
7.62399044373] 148 x
6. 3065 TERINAIVIT x
5.21612128671341 =
4.31362894900813 x
3.5667196B6270771 x
2. 9488580913750 <
2. 4376393448059 x
2.014766GRINTIAT
1.66502275571734 x
1.37580246020508 <
1.1 3666640T2HEYS =
7048098652307 10
4.36676102507654 =
27034003 7942969 x
1 AT240329807804 x
1 03387490242338 <
6. 38T 160485500996 x
3,94345230989347 %
2.43326653171983 x
1500588788601 10 =
9.24924705350322 =

X

X X X X X
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10

10°
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Tasee 3
Numerical results for é(r) and its perturbative part 3(r) for two small values of 7.
and the corresponthing estimated y = (Intry/r, )" Ing X rad X)),
The error in the last digit given for &lr) and 5() is 4t most 2

787062673 x 1)~ *
341869881 x 10~ ?
122691252 x 10”7
316117557 x 10~
138110232 x 10~ ¢
100509491 x 1072
130588822 x 102
216805058 x 102
114108395 x 10?2
ID9SBO728 x 102
123033228 x 10?
196610729 x 10?2
111496462 x 10?2
157623807 % 10 72
173125159 x 102
63438564 x 10 "2
05021782 x 102
26086937 x 102
63998775 x 107}
74473723 x 107
26568294 x 10~
82434778 x 107
33612114 x 10 °°
82149619 x 10° 3
77979935 x 10~
10496008 x 10°
27374165 x 10 °
50899834 x 10~
73600149 x 107
44671011 x 10~ *
52655297 x 107*
44331348 x 10 *
43863993 x 10~ *
28671341 x 10°°
94900813 x 10~*
36270771 x 10 *
20913750 x 10 "*
HM48659 x 101

% r élr) Xr) Esumated y
A 0.01 0.999953262281947 LOOBT64874 % 107 °
.02 (.99981 5419323971 6405255681 x 107" 2 66H6RA2 1
A 0025 1. 24965844963206 3030212603 x 10°°
0.05 1.2486459 1940887 2424164742 x 10 ° 2.99999652
AL 0.0235 1.39957967500417 1 AYB27TTITZ % 10
0.05 1.39832751334396 15606436754 x 105 3.19909717
ARy 0.001 0.3999997330)51974 10716422 x 10 %
0002 (). 39999895 3003823 SAS61614 % 10" 2. 4000000
Al 0,02 1.571329513317953 1349135659 x 10 °
.04 (0.571036717982579 9.7755391 1> 10" 285714085
A 0.02 0.666545002218714 5.35639773 % 107
004 0.666182734494727 4 628178962 % 10" 31110966
A 0.0z 0.7271 24515842661 349252212 % 1077
.04 0. 72668 1859963654 3375420041 = 10" 327272588
DY 0,01 (0.999972507850553 74295324 % 10"
002 (1.99989(1328583443 594362547 = 1077 29999994
DL L.025 0.990789631890275 643526875 % 10 7
005 0.999161867194632 5.913741029 % 10 ° 3. 199998 74
DY 0.025 (0.99974664471 8168 4.92120032 % 107
nns ()L9URORGS TR TN06 4960254354 = 10" 3.33333201
§ S (h23 (.8570 16839032789 1.07128409 % 107
0.05 0 83A639500661513 1.153472868 x 10°° 342857104
EN 002 0.699928050129412 21005502 = 10~
(04 0.699712371203531 254707093 x 1077 3.5990999
By {023 11.49992633 1494289 14570792 < 10~
005 0.499705463734 380 1 96DA0GE = 10 7 3 74999098

all models. The values of the first six «, are shown in table 4 for the models we

investigated.

38087547 x 10°*
75571734 x 10 *
16020508 x 16-*
10726895 x 10 *
15230710 x 10 °
12507654 % 10°°
17942969 x 10 °
9807804 x 10 °
242338 x 10~ °
18950996 x 10 °
0989347 x 10"
3171983 x 10 *
18860110 x 1)
15350322 x 107
1906847 x 107

_——

In tables 3 and 4 we have not given results for the A'})-related theories. The
reason is that the &(r) and 3(r) functions in the A})-related theory are just twice
those of the A'3)-related theory, as remarked in sect. 1. They therefore have the
same y. and their e, differ by a factor of 2.

From a, and the first nonvanishing coefficient C, of CPT (given analytically in
egs. (83) and (84) of sect. 5) we can obtain the coefficient « relating the
perturbation parameter A to the lightest mass in the theory, cf. egs. (79) and (80).
C, and « are shown in table 5. To compare the TBA with CPT we have calculated
the TBA prediction for C, from eq. (81) (with a, from table 4), and included it in
table 5 with the CPT result for C,, whose calculation was outlined in sect. 5 for the
AY- and D{" -related models. For the Yang-Lee CFT (the A$-related model) C,
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TasLE 4
The first coefficients o, in the small g expansion of 3(r(g)), g =r".
The error in the last digil i1s given in parentheses

% a, a, a,

AU 2.1733181681754(2) < 10! - 2.7508491350(5) % 10~} 9.7354738(5) x 107°
AY 1.9393366771633(4) < 10! - 39066113291 x 10 Lon26114(H) > 1h?
Al 2.2730066166665(3) % 10~ — 7.2959204792) x 10} 5.4223150(4) % 10
AR 1.6984384285839(1) x 10~ ~ 1.6304729871(2) % 107 5.7099303(2) x 10>
A 9.643967331 3281y % 10 ° ~ 1.5383117495(4) x 10} 6.2220872(3) % 107>
A 1.0340876048977(2) > 1H " - 2.6333052786(5) x 10 * 1.57838772(6) < 10°
Al 1.2688336314025(7) x 10! ~ 5,105D47678(4) x 10 ° 4.7049522(5) = 1073
D{" 7.4295323612121(5) < 10~ ° — 6.3767173643(5) x 107 1.28642333(5) x n_rf
D 6130844616732 = 10 - 1.2063008718(3) = 10 ° 3.7603081(2) x 107
D! LO7TI372826766(3) x 10! - 2378406774(1) x 10~ ° 1141735900 > 107°
EL’ 3 331R821927218(1) = 10 ° - 2.835975423(2) x 10 S.1154305(5) x 107"
EY 2.745523163114(1) % 10~ = 2.916675500(2) x 104 6,4027012) < 107

7
B{? 1 AR322R681 147(1) % 102 - L417067561(2) % 10 * 2750083011 % 10"
a, as T

AP - 438087(2) % 10" 221474 x 107 - 12001 x 0%
AL - 1.175218(5) x 10~ ° RS = 107 ~6.06(3) x 10"
AQ ~5.10918(4) < 10~ ° S41001) x 117 — 61U X 107
Al ~ 2.556045(7) % 107 ° 12857(2) x 107 ~ 69D 107
AP ~ X183 2 10" 1843(1) = 107 - Ly =<t
Al ~ L199577¢4) x 10 ° 1.024562) x 10" —937(4) 5 10 ¥
AL - 5.49745(3) 2 10~ ° 72170 % 107 ¢ ~ 101 < 10 -h
DYy - 3.26075(2) ¢ 107 §.322(3) % 107" - 2.85(3) x 10
DL — 14737400 < 107 ° 6.476(2) x 1" - 305 % 10°°
D" ~ H.88670(6) > 10" 4.66002) x 1077 — 3405y x 0%
EY ~ L5672 %< 107 2.931(2) x 1077 B
ES" - 1759500 x 1077 5.41(1) x 10" ~ 181 = 1"
E4" ~G675202) 107" 1.814(3) x 107 ~ 532 101

was first calculated in ref. [21]. Our somewhat more accurate evaluation of the
corresponding integral, included in table 5, was obtained by a technique similar to
that used in the D{" cases; but here the integral gives rise 1o an only triple-infinite
sum, which allows us to obtain C, more uccurately than with the TBA. This
provides a successful test of the accuracy of our TBA results for the a,. The value
of C, for the E{"-related theory is from ref. [29]. Note that except for this latter
value the agreement hetween the TBA and CPT predictions is perfect. We believe
that the slight discrepancy in the E, case is due to the fact that the CPT result for
(:_, of ref. [29] is not quite accurate to the precision given. (The value of C, given
in ref. [29], where it was calculated numerically, also does not quite agree with our
analytical result, eq. (83), for this coetficient.)




wies

g=r’.

a;

9.7354738(5) x 10~
1.9026114(1) x 104
5.4223150(4) x 10 *

5.7009303(2) x 10~ °
6.2220872(5)x 10~°
57838772(6) x 10 *
4.7049522(5) x 10 *

28642333(5) x 107°
3.7603081(2) x 1073
1.1417359(1) x 10~ *

5.1154305(5) x 10°°
6.402701(2) x 10°°
2.750083(1) x 10~

aq

—-1.20(1) x 10°%
—6.06(3) x 10~ %
-6.122) x 1077

- 6932« 107"
— 1140 x 1o *®
-9.37(4) x 1%
-1.01(Dx 10" *

- 2.85(3)yx 1071
—3.052) x 10
= 3.40(5) x 10~ %

- 798 x 1"
—1.8(1) x W~
—53(2) x W
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TasLE S

The analytically known first coefticient f, ol CPT, eqs. (83) and (84), the value of « oblained as
(a,/C )’ /¥ (with a, from table 4), the TBA prediction for 5. eq. (81). and the CPT resuli
for FZ The exacl values for the Ising field theory (A']?) are shown for comparison

& o K=Am " €, (TBA) G, (CPT)
AP o (27)! - 21803 /2 ~21{3)72°
Al 12.58308592696532  0.164303312940728(5) -~ 4.4746422804(6)

Ay 6.82213195517958 0178484948224 174(R) -2 7105684756(5) ~2.7107(5)
AlY S.M6102325614698 0, 196(8190672957(1) — 2 080B25564%(5)

ALY 417961 1780057032 0.2154064 1496093(2) - 1 B14536355%(5)

Al 3.722555422994466  1.23570732429118(2) - 1.7062351868(3)

.-‘\'_j' 3451207388176337  0.256634371 18402(2) - 168 19799204(5)

AL 3.283803388R44300  0.27798592925274(8) - L70Y773346( 1)

AT - LT50093194020531  (.097048456298606(6)  0.17311565555(2)  0.17311565555984(2)
A 2.378996974689406  0.040537955423786(4)  ~ 0.93A0966167(2)

A'g’ 5.198797174960418  0.019890901 108401(4) - 6.6556T7855(1)

Al 8177679609711356  0.015515814901646(9) 21 20560281(2)

i 417961 1780057032 0.133325360490478(5) - 2.0131158889(2) - 2.01812(3)
DY 3.451207388176337  (.15797608617775(2) - 1.9367802357(5) - 1.93676(4)
B 3.180437510254713  0.18403147021451(3) - 2.0733634615(9) - 2073365(1)
ES? 3.0B6187627468699  0.10390339258619(2) -2.433232175(2)

B4 3.185717895036244  (.09283439222673(2) - 3.9269242)2(3)

EH 3BS4S3O510914108  0.06203236135476(2) - 957011821 1) - 9.5704(2)"

“From rel. [29]

To further demonstrate the accuracy of the TBA results as compared to other
methods, we mention a universal quantity which is of interest in magnetic systems

[29,55-57]:

where

A=~

my(Ng)

lim —— |
Ny — < INRm_‘( Nf\’]]-

my(Ng) = M“TX(NLNR)— (M)

my(Ng) = lim (N, Ng) ™ '[(M*) - 3¢M°y]

(110)

(111)

are the first cumulants of the total magnetization M on an N, x N, lattice (with
periodic boundary conditions) at criticality, For the Ising model 7 was evaluated
numerically using transfer matrix methods [56] and a Monte Carlo caleulation [57).
The quoted result of both methods is 2.46044(2). CPT predicts # = — 12C,HwC}).
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estimated [29] as # = 2.46048(5) (cf. table 5). From our TBA results for the
E(-related model we estimate # = — 12a,/(7a;}) to be 2.460399897(4).
If we assume that X(r(g)) has a singularity of the form
3(r(g))a(g—g)" asg—g,, (112)

we can estimale the position g, and exponent a of the singularity from the ratios
of successive a,,. If (112) were true for all g, we would have

a, ., 1 a+ 1
= =—~{1— . (113)
a, 2y P

If there are additional singularities in (112) of the same form with a g, of larger
magnitude, a larger «, or, in general, any weaker singularity (including regular
contributions), there will be o(l/n) corrections to the ratios r,. A simple and
efficient way to take these corrections into account when extrapolating the r, to
n == to obtain g,=1/r,, is to perform rational extrapolation [S0] on the r,
considered as a function of 1/n (this gives much better results than, for instance,
polynomial extrapolation in 1/n). From the slope of the function obtained by
extrapolating the 7, at 1/n = () we can also obtain an estimate for the exponent a.
In the extrapolation it is important to know as many a, as accurate as possible:
that is why we made some effort to calculate the &(r) to high precision,

Qur results are shown in table 6. The error estimates for g, and o presented in
this table were obtained by observing how g, and a vary as we fit 2(r(g)) to

TasLe 6
Numerically obtamned parameters of the first singulanty ol the perturbative part of
the ground-state scaling function, Z(r(gDale —g,)" as g — 8,
For companison note the exact values of the Bing hield theory

1A

Lo ry = [yl a

- 13.901) 2.49901) 0.4%5)
—13.8(2) 2.68(2) 0.31(5)
= 12.442) 2.39(2) (0.50(5)
- 10.12) 2.16(1) 0.49(6)

-82{2) 1.97(2) 0.495)

—6H.602) 1.8 2) 0.48(7)

-5.4(2) 1L.67(2) 0.501)
—-24.5(2) 2.904(8) 0.52(6)
-15.92) 2.074(R) 051L5)
-~ 10.5(3) 2.02(2) 0.5008)
- 21K 2.635(8) (L3003)
-22.92) 2.386(6) 147(6)

~25.8(2) 2.379(7) 0.50(4)
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polynomials of different orders and as we vary the number of “data points™ ¢(r)
using in the fitting process. (This is a safer method than just taking the “fitting
run” with the smallest (reduced) y2. and take as error the error of the extrapola-
tion for this one run.) Usually the last coefficient «, determined in a specific fitting
run has a much larger error than the other ones, and correspondingly the last ratio
should not be considered in the extrapolation to n = .

The above procedure gives relatively small errors. To be sure that there are no
sources of systematic errors we have tested the whole method on the case of
massive free fermions (see sect. 6), where we know the exact values of g, and «. In
this case the calculation of ¢(r) reduces to the numerical integration of the r.h.s. of
eq. (90) and we now also subtract the r* In(l/r) term in eq. (97) from ¢(r) when
calculating 2(r). Comparison of the results with the exact coefficients a,,, which
can be read off from eq. (97), and with the exact values g, = -7’ and a =3
shows that our error estimates are reliable in this case, and therefore presumably
in general.

In sect. 4 we mentioned various properties of the functions €6, r.p =0),
(8. r) and (8, r). These were confirmed numerically for several models by
solving the integral equations determining these functions using the method
discussed for € ,(0).

8. The singularity structure of ¢(r)

The exponent « of the leading singularity of 3(+(g)) in table 6 is always very
close to 0.3. In fact. we claim that @ = } exactly. As we now explain, this is related
to the well-known fact that at crossing points of eigenvalues of perturbed operators
generically only two eigenvalues “collide”. Another. perhaps more physical way 1o
understand the singularities of X(#(g)) will be presented later in this section.

Consider first perturbation theory in a finite-dimensional Hilbert space [46]. The
eigenvalues E (A) of a perturbed operator H, = H,, + A} are then just branches of
algebraic functions of the perturbing parameter A. since they are solutions of the
characteristic equation. The singularities of the eigenvalues are therefore (non-
logarithmic) branch points. It is clear that for a branch point of order m to occur
al some A, at least m eigenvalues must degenerate at this A. It is also easy to see
that the eigenvalues stay finite at the branch points. Now, generically, at most two
eigenvalues coincide at any given A, so that all singularities are expected to be
square-root branch points, (One can of course find examples in which three or
more eigenvalues become degenerate at some point, but in the space of, say.
hermitian matrices representing the operators #, such a situation occurs ~very
rarely”, in a sense which can be made precise [58]. We are not aware ol any
field-theory-related examples in which higher branch points occur, although this
might just be a sign that more complicated theories, which exhibit such behaviour,
have not been studied yet.)
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How are the above considerations related to our case of perturbations of CFTs,
whose Hilbert space is infinite dimensional? Imagine truncating the Hilbert space
of the theory to a finite-dimensional space of, say, dimension N. In a CFT the
trunication can be performed very naturally according to the (left and right)
conformal dimensions of the states, for instance [59]. For any fixed N the above
remarks then apply, showing that the perturbative part of the (rescaled) ground
state energy. SV (r(g)) (cf. eq. (65)), has only square-rool singularitics in the
truncated Hilbert space (modulo the possibility of higher order branch points). Let
us denote the positions of the singularities of S(r(g)) by g™, Unless one has
chosen a very perverse sequence of truncations of the Hilbert space of the thaory
one would expect that as N — o the positions of the singularities stabilize, i.e. that
at least for n < N we can uniquely identify g!™ as N varies, and that g, =
limy . g},"" exists. If the singularities are (square-root) branch points for linite N,
they must remain so as N —=. The qualitative nature of the singularities can
change at N == only at values of g where the set of g, has an accumulation
point. Barring this latter possibility, S(r(g)) is expected to be a branch of an
analytic function with square-root singularities. (We are ignoring all subtleties
related to the fact X(r(g)) actually lives on some Riemann surface of infinite
genus. Analytic continuation around one branch point can then actually lead to an
cigenvalue different from the lowest one we started with! This in fact happens for
the anharmonic oscillator [60—62] where all eigenvalues ol a given parity live on
one and the same Riemann surface. each sheet of the Riemann surface corre-
sponding to one energy level)

For perturbations of CFTs with y > 2 our numerical results clearly indicate that
at least the first singularity g, is an isolated square-rool singularity. The work ol
Yurov and Zamolodchikov [39], who numerically studied the eigenvalues of the
hamiltonian of the perturbed Yang—Lee CFT at various truncation levels. shows
that up to the largest |g| they investigated only two eizenvalues collide at a time,
so that the corresponding singularities are also square-root branch points. Their
results also support the general scenario sketched above, with the stabilization of
the g, already occurring for relatively small N.

Note that this picture of “colliding eigenvalues™ also explains certain qualitative
features of our numerical results for the positions of the first singularity g,,. e.g.
that in the A)-, A2~ and D}"-related theories g, moves closer to the origin as »
increases (cf. table 6). This is presumably related to the fact that in the correspond-
ing unperturbed CFTs the gap between the ground state and the next encrgy level
decreases as n increases: i.e. the difference between the lowest and the next-to-
lowest scaling dimensions becomes smaller. If energy levels collide at some
negative g, they will typically collide earlier if they start out closer together at
g=M

For the perturbations of free theories or the critical Ising model by a pure mass
term we know the exact analytical structure of their ground-state scaling functions
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clr) from sect. 6. These perturbations are somewhat singular, as seen from the
r¥inr term (g = r’> here) in the corresponding ¢(r) functions; all other singulari-
ties of ¢(r) are however well-separated square-root branch points, which is
presumably the generic situation.

Note that the positions of the singularities for the free theories are the solutions
of the equations ¢,(r) = 0, where the ¢,(r)/R are the energies allowed for a free
particle in a box of length R, with periodic or antiperiodic boundary conditions for
bosonic or fermionic lype particles, respectively (cf. sect. 6). For the scaled
anharmonic oscillator Shanley [62] has given arguments that the position of the
real part of the singularities of its eigenvalues should approximately be determined
by E (g) = 0. where the £, denote the different cigenvalues of the scaled anhar-
monic oscillator, It would be nice if similar statements hold more generally. For
some suggestions in this direction, see below.

It such results hold in general, one might immediately conclude that the only
accumulation points of singularities is at infinity (at least if ¥ > 2). Here we Just
give an argument which suggests that the singularities do in fact accumulate at
infinity. The point is simply that this will typically be the only way that 3(r) can
grow like 7 at large r. as we know from eq. (65) and the fact that & r)—0 as
r— =, In fact. this known asymptotic behaviour of 3(r) leads to quarntitative
restrictions on the rate at which the positions of the typical smgularities approach
infinity (we say “typical”, because a set of singularities of sufficiently small
measure can do “wild things” without affecting the asymptotics ol 3(r)). Consider.
as an example motivated by the free theories of sect, 6. the following form for
2ir(g)):

S(r(2) = L b,(Va—5, - V=5.). (114)

n =10

Assume that the g, are negative (so that the b, must be real) and that g.= —gn,
b, =bn ¥ for some y >0 and B € R, for large n. A simple calculation then shows
that for large ¢

3(r(g)) =O(g "' #7), (115)
so that matching to the known O(r%) = O(g /") behaviour requires

I-B
=

+

(116)

rudl=

A AN

Note that § > 2 implies that 8 < 1. The case of free theories corresponds to 8 =0
and y =y =2, cf. sect. 6. (In this case one has to perform an additional “subtrac-

tion” in eq. (114) to make 3(r(g)) well defined, i.e. replace VESE,, — ‘/ﬁ g, by
V8 —8, 8, - g/(?.J — &, ), which then implies that the large-g behaviour of
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3(r(g)) is dominated by a g In g term, as we know from sect. 6.)

We have not yet commented on the assumption we implicitly made in our
numerical analysis of the last section. namely that the first singularity g, is real. If
real, it is of course negalive, since, as mentioned in sect. 4, it is rather clear that
one can rigorously establish analyticity of the thermodynamics for physical values
of temperature and chemical potentials. However. a priori the singularities might
just as well occur as complex conjugate pairs in the g-plane: 3(r(g)) is then still
real. For the anharmonic oscillator, for instance, nonie of the singularities is at real
coupling. For the theories of secl. 6, on the other hand, all singularities occur at
real g =r’.

For the Ising field theory (and similarly for free bosons and fermions) we can
understand the mechanism that leads to this phenomenon, by following the
derivation (28] of the scaling-limit partition function from that of the Ising mode|
(at zero magnetic field H) on an N, XN, lattice with periodic boundary condi-
lions [52]. This will also reveal the physical origin of the singularities from
the point of view of the underlying lattice system. Each of the four “partial
partition functions™ of the isotropic lattice model (analogs of the D, ; in eq (99)
has N, - N, zeros in the complex temperature plane. In the thermodynamic limit
these sets of zeros all approach the same continuous distribution, which is also the
asymptotic distribution of zeros of the full partition function, at least close to T.
The asymptotic zeros lie on two circles [63] (in an appropriate variable), one of
which “pinches” the real T-axis at 7. at a right angle, with a density of zeros
proportional to |7 - 7| for small (imaginary) 7 - 7.. This form of the density of
zeros directly implies [63] the logarithmic divergence of the specific heal at
criticality.

In the scaling limit N, - = with ¢ =N, /N, =L/R and r=Rm ~ NT=T0)
fixed, the region around T = T. is “blown up”, and the zeros of the four partial
partition functions are determined by
(ern,‘2 29, \*

) +

- = —m’, (117)

where n, n, are integers or half-odd integers, depending on which of the partial
partition functions is considered. In fact. schematically, the lattice partial partition
functions become

& L L
CXD{‘ | F.,,U}} [T (1 F etk (118)

2;? L el =g

in the scaling limit, where ¢,(r) was defined in eq. (100). The zeros of this
expression are given by Le, (r)/R=2min,, with n, an integer or 2 half-odd
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integer, respectively, for the two signs in the above expression; this is the same
condition as (117). The analysis of ref. [28] together with our discussion in sect. 6
shows* that the first exponential on the r.h.s. becomes the exponential of the
free-theory scaling function cﬂ( r): when combined with the infinite product it gives
the building block D, ; of Z, cf. egs. (103), (99), and (95) and (96). So we see
that the zeros of the infinite produets correspond directly to those of the partial
partition functions on the lattice, where their “pinching” of the real axis at 7_is
responsible for the phase transition. Now the crucial point is that although these
infinite products disappear in the limit L — =, the scaling functions ¢,(r) still
“remember” the position of these zeros (determined simply by &,(r) =01n this
limit), but now they manifest themselves as square-root singularities!

We would like to suggest that the situation in all the other models is similar.
namely that the singularities of the functions 3(r(g)) correspond to the zeros of
the partition functions of the relevant lattice models (in the scalting limit appropri-
ate to the cylindrical geometry); moreover, the singularities of 2(r(g)) are real and
negative (at least the first, sec below) because the partition-function zeros of the
lattice model correspond to purely imaginary A for perturbations of unitarny CFTs
(where g ~ A?), or negative A for the non-unitary CFTs (where g ~ A). For the case
of the Ising model in a magnetic field we know from the Yang-Lee theorem [24]
that all zeros of the partition function lie on the imaginary H-axis (although the
exact positions for a finite lattice are not known), and that in the thermodynamic
limit they accumulate on this axis, reaching the origin H =0 if 7 < T.. In the
scaling limit leading to the E{’-rclated theory on the cylinder (taken at 7 =T
with H — 0, N, — =, keeping N, /Ny =& == and N H V= N HYS ~ < A%
fixed), the Yang-Lee zeros should become discretely located on the imaginary
A-axis, the first singularity of X(r(g)) found in the previous section corresponding
to the zeros (two!) closest to the H-axis. This singularity is therefore related to the
Yang-Lee edge singularity, though in the special case of 7" = T, where it leads to
the phase transition of the Ising model at zero “imaginary” magnetic field.

In all other cases we lack information on the partition-function zeros of the
corresponding lattice models, but here we turn the logic around: The fact that the
exponent « of the first singularity g, of X( r(g) came out to be very close to the
expected value 1 (cf. table 6), under the asswmption that the {irst singularity is real.
presumably means that this assumption is correct. Suppose now that the asymp-
totic density of zeros of the corresponding lattice model crosses the critical point
along a line (i.e. does not fill out an area there) in the complex plane of the
variable that becomes A in the scaling limit. The reality of the first singularity g,

* We are skipping a few subtleties here. reluted to the fact that the lattice version of what we
schematically call £,¢,(r) does not have a well-defined scaling limit since it contains a team of the
form r2 In Ny, see eq. (3.30) of rel. [28]. The remedy is 1O Sublrict a erm - r2 (T = T which is
the lattice analog of the subtraction of a bulk term tO implement the normalization condition
(-ﬁ(x) =(.




686 T R Klassen, £ Melzer /7 Thermodvnamics-of scattering theories

implies then that this line is tangent to the imaginary axis in the unitary cases and
the Yang—Lee model, while tangent to the real axis in all other non-unitary
models. Since the scaling limit “blows up™ an infinitesimal region around the
critical point, it follows that afl singularities of 2(r(g)) are real*. Therefore eq.
(114) might not be a bad guess for the form of 2(r(g)) for all the purely elastic
scattering theories with § > 2 considered here (although there are infinitely many
other possibilities, e.g. replacing the linear terms under the square roots in eq.
(114) by more complicated polynomials).

9. Concluding remarks

We have seen that the thermodynamic Bethe ansatz is a powerful method to
establish exact (or at least numerically precise) results about the thermodynamics
of certain nontrivial interacting (1 + 1)-dimensional QFTs. In particular, it allows
one to obtain numerically highly accurate results for the ground-state energy of a
purely elastic scattering theory on a circle of arbitrary radius, going far beyond the
small volume expansion provided by CPT on the cylinder. In fact, after the first or
second term even the perturbation expansion coetficients are easier (o obtain using
the TBA than with CPT itsell.

Recently. Yurov and Zamolodchikov [39] have proposed a “truncated conformal
space approach™ (mentioned in sect. 8) to analyze perturbations, not necessarily
integrable. of CFTs on the cylinder. In this approach one can study not only the
ground-state energy. but also (multi-)particle excitations in the massive theory,
allowing one to see the interpolation between them and the conformal states of the
unperturbed theory (cf. the discussion after eg. (105) in sect. 6, and rel. [64]). They
applied this approach to the perturbed Yang-lee CFT and used the highly
accurate TBA results for the ground-state energy as a check for the less accurate
results of the “truncated conformal space” method (conversely, the latter method
allows one to obtain the position of the first singularity g, of 2(r(g)) more
accurately than with the former, serving as a test of the TBA - or rather of the
extrapolation method used to obtain g, within the TBA framework). In the
further study of the perturbed CFTs considered here using the “truncated confor-
mal space approach” or other approximate methods, our TBA results can be used
to check the aceuracy of these methods,

* We should remark that this argument actually also assumes that «ff the zeros of the lattice model
close 10 the eritical point are “gemeric”. in the sense that they asymptohcally lie on the line on
which we asumed the zeros to become dense. But in principle, e.g. if a theorem of the Yang-Lee
type (assuring us that alveady for a finite lattice the zeros lie on the sume line on which they
actumulate asympiotically) does not apply, some zeros might conceivably be non-generic. the
asymplotic density of zeros being unaffected. Note that this ~nasty possibility” is not realized for

the sealing limit of the H = () lsing model. despite the tact that there 1s no Yang-Lee theorem in

this case
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We think that the TBA, the bootstrap and related ideas can still teach us a lot
about (integrable) massive QFTSs in 1 + 1 dimensions. Some calculations. e.g. that
of form factors [6, 64,65] (thereby obtaining representations for the Green func-
tions) for some of the more complicated S-matrix theories, seem possible in
principle. but difficult in practice. For other projects, ¢.g. deriving general expres-
sions for the energy levels of a finite-volume purely elastic scattering theory in
terms of its S-matrix (at least for large volume. in other words, calculating the
corrections to the leading behaviour determined by eq. (24)). there is more hope.

Other questions deserving further investigation are the observations we made in
sect. 8 concerning the relation between the singularities of the groupd-state scaling
function ¢(r) and the zeros of the partition function of the corresponding lattice
model in the scaling region. The QFT as well as the statistical mechanies side of
this issue should be interesting.

We would like to thank P.G.O. Freund, G. Jungman, L. Kadanoff, V. Korepin.
1. Liu. L. Mezincescu, R. Nepomechie, H. Ooguri, H. Saleur and A.B. Zarmalod-
chikov for discussions. Parts of this work are presented by T.R.K. to the Depart-
ment of Physics, the University of Chicago. in partial fulfillment of the reguire-
ments of the Ph.D. degree. This work is supported by the NSF, grants no.
PHY-90-00386 (T.R.K.) and PHY-90-07517 (E.M.).

Note added in proof

After submitting this work we became aware of ref. [66]. where infinite sums Jike
those appearing in our egs. (95.96) (“remnant functions™) are studied in great
detail. In particular. the results obtained there complement those of refs. [28, 2Y]
and can be used to deduce the large- behaviour of the partition function of the
Ising field theory on the torus. We did this independently in sect. 6, using the
integral representations (90) for the ground-state scaling functions of free particles.
which do not appear in ref, [66]. and in our opinion are quite illuminating. We also
thank M. Henkel for pointing out that the finite-volume mass gap in the Ising field
theory, eq. (105), was written down previously in ref. [67] (although again not using
eq. (Y0). Finally. we should remark that our conjecture at the end of sect. 8 aboui
the asymptotic density of zeros of the lattice partition functions crossing the real
axis vertically (in the unitary theories), has recently been proposed independently
[68] for the special case of the 3-state Potts model, based on a numerical study of
the zeros of the partition function on finite lattices.
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