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S-matrix [10]. The task of constructing the “minimal” (see sect. 2) part o tha
S-matrix of a factorizable theory simplifies considerably if all reflection ampl'
vanish. Using the bootstrap principle (sect. 2) and a few additional assumy
[2,6], it is possible to construct a minimal reflectionless S-matrix with the
spectrum of IMs as that of the perturbed CFT, and this construction seems
unique. Therefore it seems very likely that the minimal S-matrix thus constry
is indeed the minimal part of the S-matrix of the perturbed CFT. Further evidenge
is provided by recent numerical simulations; calculations of the excitation spectri
of certain lattice systems, which should renormalize to some of the pe
CFTs in question, confirm at least the lowest mass ratios predicted by the $- -matriy
theories [11]. g
The (Lorentz) spins of the IMs in the perturbed CFTs considered in the
literature follow a remarkable pattern: As far as they can be determin
present methods, they are the exponents of some affine Lie algebra, modulg

Coxeter number [12]. This affine Lie algebra, belonging to the list AT AR )
E{N EDP EY, is the same one on which a free-field representation [13, I4] (altern,
tively coset construction [15]) of the corresponding unperturbed CFT is based
Therefore the relation to affine Lie algebras is not totally unexpected. (The family
of S-matrix theories related to the algebras A%, which are the only twist
nonsimply laced one in the above list, is somewhat special, as will be explained

sect. 3.) One finds the connection to affine algebras even more striking whefl

considering the structure of the S-matrix theories that have been propo
[3-7,16] to describe perturbed CFTs. However, at present there is no understa
ing of the manifestation of the affine algebra structure in the details of the
S-matrix theories, details on which we will elaborate in sect. 3.

There are other massive quantum field theories (QFTs) which are — in this ¢as
by definition — related to affine Lie algebras. These are the affine Toda ﬁ
theories (ATFTs). The lagrangian of the Toda theory based on an affin
algebra of rank r, describes r massive scalar fields interacting through an exp
tial potential specified by the root system of the affine algebra [17,18]:
simplest example is the “sinh-Gordon™ model based on AD. The ATET
known to be integrable at the classical level, again with the spins of the IMs
by the exponents of the affine Lie algebra, and there is increasing evidenc
that they are integrable at the quantum level as well, at least those ATFTs b
on simply laced affine algebras. In the latter cases low-order perturbation th
indicates [5,16,20] that the classical mass ratios, obtained by expanding
classical potential around its minimum, do not get renormalized in the qua L
theory. These mass ratios exactly coincide with those in the minimal S—mﬂ :
that are candidates for deseribing perturbed CFTs. Naturally, therefore, the §8
minimal S-matrices have been suggested for the Toda theories [5, 16, 21]. HO_ N
the Toda lagrangians depend on a coupling constant, and so their §-madf -
should also depend on it. In particular, when the coupling constant tends t0 ':-f"
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the S-matrices should become trivial, corresponding to theories ©f fee massive
posons. This observation has led the authors of refs. [3.16.21] to comevute that
the S-matrices of the quantum ATFTs are the minimal S-matrices muiiviod by
certain coupling-dependent factors, the so-called [5] Z-factors. Thewe factors do
pot have poles in the “physical strip” (see sect. 2). and so thev do not wminoduce
new particles into the theory. Nevertheless, their presence does of course change
the dynamics of the theory.
The interesting question arises, whether a given massive perturbed CET oxhibit-
ing IMs with spins that are the exponents of a certain affine Lic algebra, is
described by the minimal S-matrix related to that algebra. or ™ the ATFT
§.matrix (Z-factors included) at a specific coupling. (According to the conectures
in the literature [5,16], the Z-factors are nontrivial for all values of the (real)
coupling.) There is of course also a third possibility. that the periurbed CFT is
described by none of the above two S-matrix theories: Either the munimal N-matrix
siready—wrong, because._some basic _assumptions leading to the minimal
solution — e.g. that of reflectionless scattering — are not applicable. ot the minimal
S-matrix is correct but should be multiplied by different Z-factors sull consistent
with the general constraints of S-matrix theory and the requirement that they do
not introduce new masses into the theory). Based on the free-ficld l'C[‘l'L‘.\'c‘lll;I—liull
[13,14] of the unperturbed CFT. several authors [8.9.22] argued in fivor of a
relation between perturbed CFTs and ATFTs with fnaginary coupling. At first
sight, this proposal looks problematic, because generically a Toda theory with an
imaginary coupling does not Have a real lagrangian (the single exception being the
ATFT of A() where replacing a real by an imaginary coupling cm‘rcspnn:i,x 0
going from the sinh-Gordon 1o the sine-Gordon model). Even ignoring this
problem, one would expect the ATFTs with an imaginary coupling 1o have solitons
in their quantum spectrum — as in the sine-Gordon model - seemingly destroying
the coincidence of the mass spectra of the perturbed CFT and the ATET related
to the same algebra. Nevertheless, perturbed CFTs might well be related to some
modified imaginary-coupling affine Toda field theories, in which the above two
problems are solved simultaneously. In fact, certain truncations of the sine-Gordon
model at special values of the coupling have been proposed [23-25] to deseribe the
1.3, perturbation of the Virasoro minimal models*. Although the sine-Gaordon
model is special in that the first mentioned problem does not oceur, one might
hope that also in general a suitable truncation of the Hilbert space of the
imaginary-coupling ATFT would restore its unitarity, in analogy Lo the Feigin-
Fuchs construction of CFTs [13].
In an attempt to answer the question raised in the previous paragraph, we
analyze in the present paper the short-distance (UV) behavior of the purely clastic

ik

L . . N . 'y
For details on the terminology and results of CFT used throughout this paper we referthe reade

10 the recent reviews of the subject by Cardy and Ginsparg [26] and references therein
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S-matrix theories (both minimal and nonminimal) that were recently dis
connection with perturbed CFTs. We use the thermodynamic Bethe ans
nique, following the treatment of Zamolodchikov [27] of the perturbed t
Poits and Yang-Lee CFTs. In this approach, given a purely elastic S-mat
can explicitly evaluate the finite-size scaling coefficient ¢ (see sect. 4), character
ing the CFT at the UV limit of the given S-matrix theory. Our results for. & shi
that the UV limits of the minimal S-matrix theories are the CFTs in questi
UV limits of the S-matrices with the Z-factors proposed in the literature are
to be theories of free massless bosons, supporting the conjecture that fi‘.
S-matrices describe real-coupling affine Toda field theories. It
The paper is organized as follows. In sect. 2 we review the general Lheory of
purely elastic scattering in 1 + 1 dimensions, and describe how one can cons o
purely elastic scattering theories using the bootstrap principle. In sect. 2 we di
particularscattering theorics in detail.This-section contains some new-resul
D{"-related S-matrix theories, but it is mainly intended to summarize the dal
the already known diagonal §-matrices, which we will need later. An outline o
thermodynamic Bethe ansatz method, leading to the useful result eq. (67)
allows a direct calculation of & in terms of the S-matrix data, is presented in
4. In sect. 5 we use the results of sect. 4 to calculate the finite-size sca
coefficients of the S-matrix theories described in sect. 3. In sect. 6 we discuss
results, and present a conjecture to which they have led us, namely, that
¢—12d, is a measure of the number of degrees of freedom of an arbi
two-dimensional (modular invariant) rational CFT.

2. Review of purely elastic scattering theory

diagonal factorizable S-matrix theories. Such scattering theories are also kn®
purely elastic, In the following we will summarize some basic facts about_ !
theories, following the conventions of Zamolodchikov [2]. Nondiagonal ﬂl
will be briefly memloncd in secl 6 A

local TM* of Lorentz spin greater than one, in addition to cnergy—mome
implies [28] that the set of momenta — hence, in particular, the numbe
particles — is conserved in all scattering processes (more on IMs later in tht
section). All that can happen is a reshuffling of momenta between particles | )
same mass, possibly a change of internal quantum numbers, and a time del
advance) compared to the free case. The requirement that the unitary lranSfO

: o be
* Although in all theories with one nontrivial IM there are known or at least conjecml":d Prs
infinitely many IMs.
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tions generated by the nontrivial IMs (these transformations act like momentum-
dependent translations) commute with the S-matrix, then implies that an arbitrary
scattering amplitude can be decomposed into two-particle amplitudes. Consistency
of different ways of decomposing an amplitude into two-particle amplitudes leads
to cubic relations for the two-particle amplitudes ~5¢ (here a,b denote the
incoming and ¢, d the outgoing particles). These cubic relations are essentially the
famous “‘Star—Triangle” or “Yang-Baxter equations” [10].

For a diagonal S-matrix not only the set of momenta, but the momentum and all
the quantum numbers of each individual particle are conserved in every scattering
process. The conservation of the individual momenta implies that the identity- and
the Y matrix in .= 1 +i9 give the same momentum-conserving $-functions
when sandwiched between states. The usual analyticity requirements of QFT can
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therefore be expressed-directly in terms of ., after factoring out the momentum
$-functions. (The S-matrix .~ will always be understood to have the é-functions
factored out already.) The scattering of particles a and b is then described by the
S-matrix element S,, = .#4", which for physical momenta is just the exponential
¢ of the (momentum-dependent) phase shift §,, of the in-state with respect to
the out-state. Explicitly, with an obvious notation for states, the definition of S,

reads

ab

‘(I(Hu)b(ﬁb)>m = Sub( gu’ 0/))|a(8a)b(0h)>oul . ( 1)
Here we have introduced the rapidity 8, which provides a convenient way of
parametrizing the momentum of a particle in I + 1 dimensions:
(p”.p')=(mcosh @, msinhf) . (2)

Note that the Yang—Baxter equation is trivially satisfied for a diagonal S-matrix.
In terms of the Mandelstam variable s = (p, + p,)?, S,,(s) has cuts, required by
two-particle unitarity, along s <(m, —m,)* and s> (m,+m,)* in the complex
s-plane. Since there is no particle production and any scattering amplitude factor-
izes into two-particle amplitudes, multi-particle unitarity is not expected to imply
the existence of further cuts. “Anomalous thresholds” [29] in (1 + 1)-dimensional
theories give rise to higher order poles — not to cuts as in higher dimensions -
which will be discussed later. We therefore assume that the above cuts are the only
cuts of S,,(s). They are purely kinematic and can be eliminated by considering S,
10 be a function of the relative rapidity 6,, = |6, — 6,] of the scattering particles,
USIng

+

2 2 2
s=s(8,,)=m;, +m;+2m,mycoshf,, . (3)

Physical values of s — the upper side of the cut along s3> (m, +m,)? - are
Mapped to positive values of 8,,, and the bound state region (m, —m,)* <s <
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(m,+m,)? is mapped onto the segment Re 6,, =0 of the physical strip 0
<. Poles in the s-plane give rise to poles in the #-plane; so we will ass
S24(0) is a meromorphic function of 8, The assumption of real analytici
s-plane, .#(s) = #*(s*), translates into #(§) = #*(—=6*); in particular |
real on the imaginary 6-axis, Using real analyticity the unitarity of the §-maf
#0)#1(0) = 1 for physical (real positive) values of 6, becomes .~() T

1. By analytic continuation this latter equation then holds for all values
the purely elastic case, unitarity therefore reads

5.(8)S,,(—0) =1

for all particles @, b in the model. We assume our theory to be parity invari
Then=8_,(6)==5,,() By charge-conjugation symmetry we have '

.

Sap(0) = a(0) -
Crossing symmetry, S ;(s) = Sa($) =S,,(2m2 + 2m? — 5), becomes simply'
Saa(0) = S5,(8) = 8,,(im—0),
2mi-periodic function of 4.
In a local QFT we expect scattering amplitudes to be polynomially bounde

the momenta (this follows [30] from the Wightman axioms). It is a nice exe

phic, real analytic (in the sense used above), 27ri-periodic function f(8) sat
the unitarity condition (4) must be of the form

aEA

where

(6) sinh (8 +iar)

1(6) = sinh 3(0 — iaw) °

for A a set of complex numbers invariant under complex conjugation®:
assume that all poles oceur on the imaginary 6-axis, i.e. there are no uf
particles. Then every « is real and we can choose —1 < a < 1. The f,(6)
this range are therefore the basic building blocks of our purely elastic sC
theories. Note that f,(8) has a simple pole of residue 2isin am at 0 = i@

Y polynomial boundedness are products of functions o
expliasinh(2n + 1)8), where a is real and an integer. !
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smple zero at 6 = —iam. Further useful properties are -
£.(8) =fusa(0) =f_o(—6).
f(0)f o (6) =1,
falim=0) = =f,_.(0),
fu(6—imB) f(0 +imB) =fup(0) fasp(8),
fo(8) = =fi(0) =1. (8)

If at least one of the particles a or b is its own antiparticle, the additional

6

—s), becomes simply

0), ) 1

4) and (6) imply that S, is a :\

be polynomially bounded in =
ioms). It is a nice exercise to

lis @ 'mption any meromor- =
todic .unction f(6) satisfying =

i

(7a) I'.

|

= 1E]
i

(76)

nplex conjugation*. We will
. i.e. there are no unstable
<a < 1. The f,(8) with @ in
our purely elastic scattering
2isin amr at § = iamw, and 8

raducts of functions of the form

sonstraint-of crossing-invariance; ———————
Suh(e) =Sab(i1‘—f9)7 (9)

implies (cf. ref. [4]) that up to a sign §,,(6) must be a product of functions of the

form

sinh § +isinam tanh (8 +iam)

FA8) =L flim = 0) = e " nh (0 dam)
These functions satisfy
F(0) =F,,(0) =F _(8) =F_.(=0),
F0)F_(0) =1,
F,(8—imB)F, (6 +imB) =F, 5(0)Foip(8),
Fy(8) =1. (11)

When () < @ < £, F,(8) has simple poles at iam and i(1 — a )i of residues 21 tan aw
and —2i tan amw, respectively, as well as zeros at Zicm and —i(1 —a)w. F.6)
has a double pole at im/2 and a double zero at —ir /2,

The poles of a purely elastic S-matrix (paired with zeros via the unitarity
condition (4)) encapsulate the dynamics of the theory. More specifically, the poles
of cach S-matrix element in the strip —7 < Im 6 <7 specify uniquely up to.a sign
the building blocks f,(#) into which this S-matrix element factorizes. An overall
minus sign, which is significant as will be seen later on, is equivalent to an extra
factor of £,(#). In the S-matrix theories that are of interest to us here (see sect. 3)
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all simple poles in the physical strip correspond to bound states*, there ar
“redundant” poles [32]. The bound states corresponding to the poles' of
amplitude §,,(8) propagate either in the direct channel or in one of the
crossed channels, which are the direct channels of the (equal) amplitudes
and S,,(0). (Recall that if @ or b is self-conjugate then all three amplitud
equal.)

If §,,(0) has a simple pole at 6,, = iu, in the direct channel, we say th
particle ¢ of mass

m?=s(ius,) =m? +mj +2m, m, cos ug,

is a bound state of @ and b. (If there are other particles of the same mass as ¢
needs other quantum numbers to uniquely identify the particle c.) The partic
can _be identical to @ or b, of course. Eq. (12) has a geometric interpretation
terms of a triangle with sides of lengths m,, m, and m_, implying that '

Ugy +“Eu+”fe=2""- (13) 5

Here and in the following we use eq. (12) to define u$, as a function of the masses &
m,, m, and m,, whenever ¢ is a bound state of a and b. We also defines
W, =m—u, Whether a simple pole of S,,(8) corresponds to a particle €8
propagating in the direct or crossed channel, depends on the coupling 8qp betweens
the (incoming) particles a,b and the (outgoing) particle ¢. To be precise, if he.
purely imaginary residue of the simple pole has the same (opposite) sign as (g5
then the particle ¢ occurs in the direct (crossed) channel; this may sound like a
rather tautological statement, because in S-matrix theory the coupling g5, itselfis
defined (up to a sign) by saying that the residue of §,,(6) at the simple pole &t
B,, = iuS, is i(gs,)* (see, however, below). But this statement is not empty, for
very simple reason. Namely, given the masses of @ and b, different choices for e,

* Actually, the simple poles in the S-matrix theories with Z-factors (see below) should not literally be
referred to as bound state poles: In contrast to true hound states in, say, the sine-Gordon mod
the masses of the particles corresponding to these simple poles do not depend an the couplin
particular, these particles do not disappear as the coupling goes to zero, Furthermore =
different from true bound state poles - these simple poles can be seen in finite ord
perturbation theory. Finally, the purely elastic scattering of particles in the minimal Srmal
theories leads to large time delays (large compared to the time it would take a frec P§ﬂ|
traverse the interaction region) for relative rapidities up to O(1). This is characteristic ¢
formation of quasi-stationary states, consistent with the existence of bound states in the mi
S-matrices. These time delays are absent in the §-matrices with Z-factors (this follows from
S-matrices presented in sect. 3), indicating that there are no bound states. Having said this, W&
nevertheless (following other recent papers) refer to the simple poles in the S-matrices
Z-factors as bound states, since they satisfy all the properties of truc bound states that Wit
relevant in what follows. For instance, scattering amplitudes factorize on any simple pole,
important for the bootstrap equation (15).
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sign of (g5,)* correspond to different masses for the particle c. If we choose (g5 )
such that ¢ occurs as a simple pole at iuf, in the direct channel of §,,(0), its mass

is m? = sliug,), as mentioned above. On the other hand, suppose we choose the

opposite sign for (g,‘,'“f. Then ¢ occurs in the crossed channel of §,,(6), ie.cisa
pound state of a and b (or @ and b), since by crossing symmetry, ¢q. (6), it appears
45 a simple pole at i@lj, in the direct channel of §,;(8) = 8;,(8). The mass of the
particle ¢ is then m?2=sli@s,). So we see that in any given theory with known
masses the signs of all (g&,)? are determined by self-consistency. Let us also note
{hat when constructing a diagonal S-matrix theory using the bootstrap, a proce-
dure to be explained below, one has 10 make a choice for the sign of each new
independent coupling (g¢,)* encountered during the bootstrapping process. Not
any new coupling encountered is independent; some couplings are related because
we require the three-incoming-particle couplings g, =g’ to be totally symmetric
-1-a—b-and-e~and to-have the charge-conjugation symmetry &zh: = Sanc:

The above rule for assigning simple poles to the different channels is consistent
with — and follows from — the total symmetry of the g, and the bootstrap. €q.
(15) below, only if §,,(00= —1 for all particles a in the model. The latter
condition, is indeed satisfied in all the algebra-related theories of sect. 3. Other-
wise, as is the case for the sine-Gordon model at the reflectionless points (see end
of subsect. 3.3), the rule has to be modified, taking into account the nontrivial
parities and statistics of the particles [33,34].

An S-matrix theory in which all couplings gg, are real is called one-particle
wnitary. There are diagonal S-matrix theories. to be described in subsect. 3.2,
violating one-particle unitarity; some of their couplings are purcly imaginary. An
S-matrix theory violating one-particle unitarity still has a unitary S-matrix in the
sense of eq. (4); the unitarity of an S-matrix is just a consequence Of the
completeness of states in a theory [3]. One might naively assume that an S-matrix
theory violating one-particle unitarity cannot correspond to @ unitary QFT. How-
ever, Smirnov [23] has recently suggested (hat the S-matrices of subsect. 3.2 do
actually describe unitary QFTs — although the unitarity of these theories arises in
a somewhat subtle way; more on this in subsect, 3.2.

The amplitudes S,,(8) may also have higher-order poles, which are interpreted
5, 35] as arising from sccondary scattering processes of the “constituents” of the
particles 4, b. These “constituents”™ must belong to the spectrum of the theory, and
the secondary scattering processes must be allowed by the three-particle couplings
as determined from the simple poles of the S-matrix; otherwise, the S-matrix
cannot be regarded as complete and one has to specify the scattering amplitudes
for the new “constituent”™ particles with all the particles already known to appear
in the model, These considerations put rigid constraints on the position of multiple
poles: for details, see refs. [5,35]. For the S-matrices conjectured to be those of
affine Toda field theories it was suggested in ref. [5] that «ll odd-order poles in the
physical strip, not only simple ones, should be interpreted as bound states



L ey
s T

DSt s

yry—
=

| ——

s h e gt g le
- = h._.

g

s

e L .‘_

T.R. Klassen, E. Metzer / Purely elastic scartering theories

would be absolutely crucial if in some cases this would force one to introduce p i
bound slalcs — not seen s sunple poles in any S-matrix clement into the theo o

We suggest that the gcncral rule for whcn a multiple pole of S‘”b(ﬂ) shouldbe
considered as a bound-state pole is simply that it should be a simple pole of the
secondary scattering of some of the “constituents” of & and b. (Note that then‘ :
higher-order poles can never introduce bound states into the theory which are not ™
also seen as simple poles in some S-matrix element.) It is not implausible, but as'
far as we know has not been proven, that a simple pole of the scattering o

“constituents™ always corresponds to a higher odd-order pole of §,,(8), and vice
versa. el
—Finaly,—zeros-in-the physical strip, Which by unitarity (4) are accompanied by
poles outside the physical strip (on the “second sheet” in terms of the variable §),
do not correspond to bound states.

For the S-matrix theories considered in this paper we will assume that hlghcr
odd-order poles correspond to bound states. The only reason we have to make
such a decision, is that we would like to introduce the notion of massive fusion
rules (called “bootstrap fusions” in ref. [7]). This notion is useful in the discussion
of symmetries of S-matrix theories. We define the massive fusion rule coefficients
Mcfh by

3 { 1, if ¢ is a bound state of @ and b,

ap 0, otherwise.

The total symmetry of the couplings g,,. implies the total symmetry of th?'.'

M,,. =M, Also Mg=M,, . If the S-matrix theory has a nontrivial global =

-

symmetry, expressed by the fact that the particles carry some discrete charge, then =
the massive fusion rules must be consistent with the conservation of this charge;
iL.e. M, may be nonzero only if the (additive, say) charge of the particle ¢ eql-lﬂ15
the sum of the charges of the particles a and b.

So far we discussed the properties of purely elastic S-matrix theories. We now
turn to their construction, Factorizable scattering theories in 1+ 1 dimensions caf
be constructed using the bootstrap principle [2,33,34.36]. The basic idea is thfit 3
slarlmg from a small number — one or two in the cases we will wnmdcr-ﬂf

“fundamental™ particles whose scattering amplitudes are assumed to be knowns
one can construct the scattering amplitudes of bound states formed by the:
fundamental particles using the “fusion procedure”. This procedure is thel Sy
applied again to the bound states formed out of the bound states, and so Of ll- 1
Different “fusion paths™ leading to the same bound state are required, of coursé
to give rise 1o the same scattering amplitudes for this bound state. If oné is _
fortunate, the bootstrap closes on a finite number of particles; that is, the bﬂlmd_ 4
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state poles in the scattering amplitudes of all particles correspond to exactly the
same particles, and no others*. (As previously mentioned, the closure of the
known diagonal S-matrix theories is independent of counting only simple poles or
all higher odd-order poles as corresponding to bound states.) In accordance with
Chew’s idea [37] of “nuclear democracy”, the fundamental particle(s) is (are) not
unique. Starting the bootstrap with other fundamental particles can give rise to the
same model, in which particles which before were regarded as fundamental are
now bound states of the new fundamental particles. Nevertheless, in all cases
known to us, there is a set of fundamental particles whose scattering amplitudes
are simpler (in particular they do not have any multiple poles) than those of any of
the other sets of fundamental particles giving rise to the same model. The particles
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stion of massive fusion
useful in the discussion
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in this set will be referred to as the fundamentat particles™ . !

Now a few more details. Consider a particle ¢ appearing as a direct-channel
pound state in the scattering of particles a and b, corresponding to a simple pole
at the relative rapidity 6,, = iug,. One then formally defines the bound state [c(6))
at § =6, + 6, as the projection on the pole of the two-particle state |a(8,)b(8,,)) at
the relative rapidity 6, = iu, [34]. In other words, the scattering amplitude of the
particle ¢ with any other particle d is by definition given by the residue (divided by
i(g¢,)?) of the pole of the scattering amplitude of a, b and d, S,,4(0,,0, 0=
S 1(0.,)S i) Spal0pa)s At Oy = iu¢,. This gives the bootstrap equation [2]

ab

Sul(()) :S‘,(1(9+iﬁﬁ(<)5,7(!(6—l.aﬁf) . (15)

This equation, embodying the fusion procedure, should hold for all particles a, b
and ¢ such that g¢, # 0. As we already mentioned, given that S,,(0) = S0 =—1,
it follows from the bootstrap equation that —iRes S, ()i, 18 totally symmetric
in @, b and ¢, and therefore can be consistently identified as (gape)

Related to the fusion procedure are constraints on purely elastic scattering
theories arising from the existence of nontrivial IMs. 1f these IMs are local and
diagonal on asymptotic one-particle states, Lorentz covariance requires that a
conserved charge Q, of Lorentz spin s act on an N-particle (asymptotic) state in

the momentum basis as follows:

N o 2
Qs\”1(91) ~~~aN(9N)> = Z o ew"al(ex) --~(9N)>a (16)

i=\

o us if a model arising from a bootstrap closing on infinitely many

* A priori it is not obvious t
case, no bootstrap closing on infinitely

particles is always unphysical for some reason, oF not. In any
many particles seems Lo be known.

%1 e fundamental particle(s) is (are) the lightest particle(s) in the model, it is easy to see that
kinematics rules out secondary scattering of its (their) “constituents”. explaining the absence of
multiple poles in this case.
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where y“ are some (real) coefficients. This simply follows from the fact'tha
only single-particle variables of Lorentz spin 1 in 1+ 1 dimensions are the g
light-cone momenta p,=p/ -+ p! = m,e’. (Note that the right light-cone mo
pi=p”—p! =m,e”% have Lorentz spin —1.) Parity invariance implies thaf
each IM O, there is an IM @ _, with the opposite Lorentz spin —s and th

ity. As there is no true spin in 1 + 1 dimensions, we will also just write “spin’
we mean “Lorentz spin”.

When we require eq. (16) to hold for complex rapidities, the previousl
tioned definition of a bound state ¢ of two particles @ and b leads to the follo
condition on the coefficients y/:

]
a ., —ish b ol —— it
¥ € CEyeTE= .

The condition that this equation holds for all a, b, ¢ such that g&, # 0, and ¥ ¥
for at least one a, is a necessary and sufficient condition for the existence of a 10
IM of spin s. If all the angles uf, are known, one can solve eq. (17) to findt
spins s of the IMs and the explicit values of the y/ for s> (. Note that for
the ¥ are, up to an overall factor which we can choose to be 1, just the masses:
of the particles in the theory. A concise way of stating the values of all the ¥
the Lic algebra-related S-matrix theories discussed in this paper will be given
subsect. 3.7.

The application of the bootstrap in practice is not always straightforward. O
first of all determines the minimal S-matrix of a theory. This is the S-matrix Whos&
fundamental amplitude(s) — and therefore all amplitudes — have the smallest nun
ber of poles and zeros in the physical strip, among all those S-matrix theories;
giving rise to the same mass spectrum and massive fusion rules. The point is t a1
one can usually multiply any given fundamental amplitude Sy.(6) (f and 'O
fundamental) by some suitable product Z,(8) of f,_(8) with negative a, such_l $
“bootstrapping” starting from the new fundamental amplitude(s) Zﬁ-(ﬂl.’?ﬁ'(ﬂ‘) will
produce an S-matrix which still satisfies the constraints of unitarity and cros
and has the same mass spectrum and massive fusion rules. The Z,,(6) aré
so-called Z-factors.

The possibility of introducing Z-factors is advantageous when considerin
affine Toda field theories. Since the mass spectrum of these theories does
depend on their coupling B (at least in the simply laced case), it is natural
conjecture that each of them has a fixed minimal S-matrix, encoding the
spectrum, and the dependence on the coupling enters through the Z-factors:
will see in sect. 3 that in the cases under consideration, there are Z-factors
actually depend on an arbitrary (within a certain region) parameter which Wi
denoted by b. As b tends to 0, Z_,(0)S,,(8) goes to 1 for all ¢ and d, correspond

v
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ing to a free theory. For the ATFTs b must therefore be a function of B which
tends to 0 as B = 0.

In the determination of the fundamental amplitudes — even the minimal
ones — Some guesswork may be needed. In the case of affine Toda field theories
things are straightforward( As remarked in sect. 1, ATETs based on simply laced
m to be integrable at the guantum level, their mass ratios do not

and three-particle couplings which are zero or nonzero in the tree-
spectively, at the quantum

algebras see
renormalize,
lovel lagrangian also seem to stay zero Or nonzero, re
level [16]. Granted the above, if the masses are all different, the S-matrix of an
ATFET must obviously be purely elastic. In general, if there are mass degeneracies
in a factorizable theory, there can be amplitudes “mixing” different particles of the
same-mass, and even if the in- and Qut-particles are the same in any scattering
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process, there can be reflection amplitu&(%:_ﬁowever,_it_thcre are enough IMs of
spin s >0 such that their

y& of eq. (16) allow one to distinguish
between all particles, clearly no “mixing” of particles is possible, and it is also easy
w0 sce [6] that then the reflection amplitude of any two particles must vanish. In
the case of an ATFT based on a simply laced affine Lie algebra, one is in the
fortunate situation (again granted the above assugnptions) of knowing the masscs
and which couplings are nonzero from the tree-level lagrangian, i.c. without having
to know the exact S-matrix of the theory. So it is possible to calculate all v, from
eq. (17) and see that indeed there is always an IM of spin s > 0 which distinguishes
particles of equal mass. (We will find in subsect. 3.7 that this is the case for all the
Lic algebra-related theories discussed in this paper, although without using the
ATFT lagrangians.) Hence the S-matrix is diagonal, and the fundamental ampli-
tudes are just the products of £.(6) which have poles corresponding to the particles
that couple to the fundamental particles (usually there is a natural choice for the
fundamental particles, e.g. the lightest particle if all particle masses arc different).
On the other hand, if one is interested in a perturbed CFT, all one knows are the
spins of the IMs and the global symmetry of the model, which is just that of the
CFT not broken by the perturbing field. It then requires a little bit more ingenuity
to find an ansatz for the fundamental scattering amplitudes. The main help comes
from eq. (17), which, since the [Ms are known, allows on¢ to determine
some of the mass ratios in the proceeds in such a
case, we refer the reader to refs. {2,6,71

“cigenvalues”

spins of the
theory. For examples of how one

3. Purely elastic S-matrices

In this section we describe the purely elastic S-matrix theories related to affine
Lic algebras that have recently been discussed in connection with integrable
perturbations of CFTs. In each case we give the mass spectrum, the minimal
two-particle scattering amplitudes (or at least the fundamental ones, from which
all the other amplitudes can be obtained using the bootstrap equations and
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try of each §-matrix theory and the perturbed CFT which the minimal §-g
proposed to describe. At the end of the section we discuss features
common to all the theories.

3L A (nz1)

_ [ ma N oy
ma—5|nln+lj/51nl”+_l)

The fundamental S-matrix element is [38]
S14(8) =f2/(n+lj(6) .=
The full two-particle S-matrix, obtained by “bootstrapping” §,,, can be writt !

minfa,b) -1

2 e
San(0) =-f|a—b|f(n+ll(9)[ kEII -ﬁ|a-h;+nk)/(n+1;(9)] fu+h/{n+lj(e)‘f ( _

Z, . -charge [38), the charge of the particle « is just a, which is conserved
massive fusion rules of the model. The latter are given by M, =1 if and 0
a+b=c (mod(n+1)). The additional Z, symmetry is charge conjugatio
changing particles with their antiparticles. 1l
A.B. Zamolodchikov has proposed [1] that the above minimal solution illo“‘ .
case n =2, describes the perturbation of the CFT associated to the critical
three-state Potts model (c=2) by the energy density operator d,;, of Wl
(%,%). The natural generalization to n > 2 is (cf. refs. [6,8,16,39]) that the abg!
nth minimal S-matrix theory describes the perturbation of the first model 10}
unitary series of the W(A , )-algebra [14] (¢ = 2n/(n + 3)) by the primary ﬁeid- f

weight (2/(n +3),2/(n +3)). This CFT is also known [14] to describe Z ;
parafermions [40], and the perturbing field preserves the global symmetry. Fin2 Rl
the above discussion applies to the case n =1 as well, where one gets $,,(0)=

as the full S-matrix for the thermal perturbation of the Ising model [38] (the:*

2l
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‘=i.2,..-.n, where 7w
al particle | to unity (as we will

T ] -1‘ .:-:1 ]
1) (18) ;
' .""
(19)
.
@pping”™ §,,; can be written ag "
v
"+ Il( Q)J J.:: +h fin+ ”{6) * (20) I‘ll
e
1, there are cancellations that
* fundamental Z-factor is [21]
(8). (21)
L .l
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field theory”, obtained by taking a massive scaling limit of the Ising model from
above the critical temperature), with the single particle in the model corresponding
0 the bosonic order variable o of the Ising model.

32 A9, (n= 1

The masses of the n self-conjugate particles « = 1,2,...,n in the theory are

ma aa
m =sin( ) sin( )
“ 2n+1 2n+1

The general minimal two-particle amplitude is [4, 23]

(22)

2

ﬁ}{411>+2k)/’(2r1+l)(0)jl F;::+/})/(Zrl+l)(9)' (23)

mina,b)—1

Sub(e) :Fa—b/(2n+1)(0)[ n

(The n = 1 case was treated in refs. [5,21]) The fundamental Z-factor (given in
ref. 21]) for n =1) is

le(e) :th(G)F72/(2n+])+h(9)' (24)

Comparing eq. (23) with eq. (20), we observe (cf. ref. [27]) that for a,b=1,2,....n

3]

SAB(6) = SAM(O)SAP(im —6) .

ab

(25)

This “folding” of the AU} S-matrix theory into the A3, theory has interesting
consequences that will be discussed in sect. 5. The minimal A2 theories are the
only ones discussed in the present paper that violate one-particle unitarity, having
some purely imaginary couplings [3,4]. As mentioned in sect. 2, Smirnov [23] has
suggested that these S-matrix theories nevertheless correspond to unitary massive
QFTs, related to “restricted sine-Gordon models”. By examining form factors of
local fields he argues that one can eliminate the solitons from the spectrum of the
sine-Gordon model at some special values of the coupling (587 =2/(2n + 3), in a
normalization where the coupling is in the range 0 < 8% < 2), while still preserving
the locality and unitarity of the theory. The above S-matrices are indeed just those
of the “breathers” in the sine-Gordon model at these special values of the
coupling.

Note that the Z-factors change the sign of certain simple-pole residues, exactly
restoring one-particle unitarity in the nonminimal models. Neither the minimal nor
the nonminimal theories have any nontrivial discrete symmetry. The fusion rule
coefficients are M¢, = 1 for ¢ = min(a + b,2n + 1 —a —b) and also for ¢ = |a — b|
when a # b.
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The minimal A%)-related S-matrix theories are proposed [3,4, 23] to des
the ¢ 5 perturbation [weight (—(2n — 1)/@n +3), = 2n—1)/2n +3)] of
nonunitary Virasoro minimal models labeled by p'=2, p=2n+3 of o
charge ¢ = —2n(6n + 5)/(2n + 3). e

33. DM (nz=2)

For these models* we have to distinguish between two cases, dependiﬁg",
whether n is even or odd. :

3.3.1. D', n even. The n’particles, all self-conjugate, will be labeled -
L2,...,n =2, f,, and f>. Their masses are

i Ta
;= 2sin

—fora=1,2;7 =2
2(n—1) =L _(

The complete two-particle S-matrix can be determined, via the bootstrap, fro
the following three fundamental amplitudes (the case n = 4 was discussed explil
itly in ref. [16]): '

n—2 =1 .

S7is(8) = 5;,,(8) = =8, (8) = “};Ilfkﬂu-n(e) ==y }:I] Fa yin-1)(8)

The Z-factors are

in—1

zf:f.(e) zzfzfz(e) aat G l)"ﬁ kI—IO F-k/{n—l)—(—i)"h(g) s

i
sn—1

Zp(6) = —(-1)""7? kl:[] E_y pin—tysi=15ts(0) -

For the reader’s convenience we give here the rest of the minimal two-parti'
+ AN

amplitudes: .

a=1 ;..
Serf8) =507 (0) = (=1 TT Fi-a-aipjs(8)  fora=1,2,...;n~2, (295
: 3

f I
and S,,(8), where a,b=1,2,... n— 2, is simply given by eq. (23) with eve
“2n+1” there replaced by “2(n — 1)”. Note that, due to the symmetry F,(0)
Fy_(6), there are third- and fourth-order poles in amplitudes where a +b2

¢
1

* The following D{"-related S-matrices have recently also been presented by Braden et al. [20} .'
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poles which are absent in the AG) amplitudes. The third-order poles imply
MA"V7"P =1, for a +b>n. The other nonzero fusion coefficients can be
deduced from My = Mpsn =Miw =1, MIS~"'=1 for a#b, M =1 for
a+b<n—2, using the symmetries discussed in sect. 2. For n > 6 the model is
Z,X(Z, X Z,) invariant. The Z, X Z, charges of the particles 1,2,3,...,n — 2,
fir fo are (1,1),(0,0),(1,1),...,00,0),(1,0),(0, 1), respectively. The additional Z,
interchanges f, and f,. For n =4 this latter Z, is replaced by S,, enlarging the
symmetry (see further discussion below). For n =2 the S-matrix becomes that of
two decoupled A'{-related models, as expected from D, = A, @ A .

3.3.2. DM, n odd. In this case we label the n particles by 1,2,...,n — 2, f, and

f- The first n — 2 are self-conjugate and the last two are conjugate to one another.
Their masses are , _— s

1,2,...,n=2. (26)

ia the bootstrap, from
+ was discussed explic-

in—1

1/2
/\;[jl; FZk/(n—l)(e) .

(27)

»1)‘1;(9) ,

(28)

minimal two-particle

1,2,...,n-2, (29)

eq. (23) with every
¢ symmetry F,(0)=
¢S where a +b 21,

y Braden et al. [20).

ma

m) _fora=l,2,...,n—2. (30)

m,-=mf:1, mu:2sin(
Here it is sufficient to specify only one amplitude, either S;p Or its crossing-
symmetric partner S, which are given by
: n—2
Sf/‘(e) = ¥S/'f(0) = A[I]fk/(lz—l)(e) . (31)
The corresponding Z-factors are
n—2 n—1

Z;‘/‘(B) = k]:[(]f-k/(nfI)—(fl)/"b(e)7 Z_/’f(e) = klj]f;k/(nfl)%—(—l)kb(g)' (32)

The other minimal amplitudes, involving the particles 1,2,...,n — 2, take the same
form as in the n even case. The symmetry of the model is Z, X Z,, unlike in the »
tven case. The particles 1,2,3,...,n—2, f, and f are assigned the Z,-charges

2,0,2,....2,1,3, respectively. The extra Z, symmetry corresponds to charge conju-
gation. The nonzero fusion rule coefficients are M;»"}‘-“' , M/“j‘, M)A for a #b,

M for a+b<n—2, MX""D=4"% for a +b>n, and the ones obtained from
the above by the general symmetries of M¢,. Note that in the n =3 case the
$-matrix theory is identical to the AY-related one, which is to be expected from
the equivalence of the corresponding algebras.

In both cases, n even or odd, the D{"-related S-matrix theories are conjectured
[6] to describe the perturbation of the first models in the W(D, ) unitary series by
the weight (1/n,1/n) primary field. The global symmetry common to all the
models in these series [14] - Z,.X Z, (Z,) for even (odd) n - is enlarged in their
lirst models by an additional Z, (S; for n = 4), and the perturbing field does not
destroy it. These CFTs are also identified [14] with special points on the ¢ = |
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critical Ashkin—Teller line, with the orbifold compactification radius [41] being
T =Vn/2. In particular, the n=4 case corresponds to the four-state Pottg
model whose enhanced S; symmetry is manifest also in the D" S-matrix theory:
The mass-degenerate particles f,, J2, and m form a three-dimensional irreducible
representation of S,. As noted in ref. [16], the triple mass degeneracy that occurs
in other DY), related theories do not yield an irreducible triplet of particles,
Other particular cases are n = 3, where the special orbifold point corresponds to

R )

Z -parafermions (in agreement with the algebra ¢quivalence Dy = A, mentioned B
above), and n =2, where r,,, =1 gives the (Ising)? point (in accordance with %

D,=A,®A)). 3
We note a suggestive correspondence between the massive fusion rules and

symmetries of the D{M-related S-matrix theories and those of the opérator product
algebras of the unperturbed CFTs (the latter were studied in detail by Dijkeraaf
et al. [42]; we adopt here their notation, their “N* identified with our “n™): The
fundamental particles of the S-matrix theory can be thought of as counterparts of
the twist fields o, , of the CFT (in particular, the conjugation properties of the
latter are the same as those of the fundamental particles, i.e. different for n even
or odd). while the other particles @ = 1,2,...,n— 2 in the massive theory corre-
spond to the first n — 2 vertex operators ¢, in the CFT. The perturbing field in
this notation is ¢,. '

As mentioned in ref. [16], the minimal D{"-related S-matrices closely resemble

Tuil

p
those of the sine-Gordon model at the reflectionless points where the (n — 1th h
breather is at threshold. We note that although the masses in these theories are
identical, there are sign differences in amplitudes involving the fundamental g
particles. In the sine-Gordon model the latter are the soliton s and the antisoliton
5, and the amplitudes in question are [33] =sd 3
. b = 4¥* L.:I:'." )
" n-—2 F, el 2t g
S:(0)=(-1)"5,.(8) = pfk/w—n(f’)- Wt 4
=] J
g
a= 3
S:u(ﬂ)zsa.?(g),:,- l—InF-}—ta—ZH,.v‘Etn—ll(e) fora=12,.,.,n—2, (33) ' ¥
C k= ’ .
Theories with different S-matrices — even if differing only by signs — must comé ?F
from different QFTs*, Indeed, we can show more explicitly that the reflectionless =

sine-Gordon models are different from the minimal DY models. First of all, the |
sign changes in some scattering amplitudes lead to different massive fusion rules
for the sine-Gordon models; now afll the particles a= 1,2,....n — 2 (the breathers) R

* In fact, the off-shell behavior can be very different, as the example of the Ising field theory shows: -
Its almost trivial S-matrix $= ~1 is “observationally” indistinguishable (see below) from that _"_":"
free particle, §'= 1, but the Green functions of the Ising field theory are of course highly nontriVi &

[43]. 3

=
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d 5, and there are no bound states in the direct channels

[41] beii:lg are bound states of s an

state Potts of the amplitudes S and S, These fusion rules reflect the conservation of the
Lrix lheory:r; il topological charge in the sine-Gordon model (the U(1) charge, in the massive
irreducible Thirring model language): The soliton and antisoliton are oppositely charged

whereas all the breathers are neutral. The U(1) symmetry is also present in the
unperlurbcd CFTs — massless Thirring models, which are ¢ = 1 gaussian theories.
These CFTs are different from the ones whose perturbations lead to the D{"-
related models above, as we said, the jatter CFTs are ¢ =1 orbifold models, in
which the U(1) symmetry is broken. We note in particular the n = 2 case, where
the reflectionless sine-Gordon model is equivalent to the free massive Thirring
model (a free massive Dirac fermion), and the corresponding unperturbed CFT is
the Dirac Point [41] r g, =100 the gaussian line, as opposed to the (Ising)* CFT
whose perturbation is described by the DY" scattering theory. The sign differences

that occurs
fpl les
esponds to
mentioned
dance with ;

rules and
tor-prod
y Dijkgraaf i

““n”): The i in the scattering amplitudes will also turn out to -be significant later on (see
iterparts of v subsect. 5.1.3). Finally, we remark that we were not able to find nontrivial
rties of the ‘ 7-factors that could be added to the reflectionless sine-Gordon S-matrices (the
for n even coupling constant is already fixed!).
eory corrc- ; At this point we would like to comment on some amusing features of scattering
ing field in theory in 1+ 1 dimensions and purely elastic scattering in particular, which
. actually will turn out to be important later. The only “observables” in a purely
ly resemble clastic scattering theory are the time delays (compared to the free case) in the
e (n—Dth scattering of any two particles described by wave packets. In the scattering of
heorics are i particles a and b, the time delays of a and b depend on the §-matrix only through
indar tal the rapidity derivative of the phase shift, ¢,,(6) = —i(d/d®)In S,,(6). In particu-
antisoliton lar, purely elastic scattering theories whose scattering matrix elements differ only
by signs, like the minimal D" models and the reflectionless sine-Gordon points,
are “observationally” indistinguishable. Note especially that one cannot distinguish
the solitons in the reflectionless sine-Gordon models, which are fermions, from the
fundamental particles in the D" models, which apparently are bosons (as will be
argued in sect. 5). The reason is that the concept of statistics of a particle cannot be
—~2. (33) d.efined on a pure S-matrix Jevel in two space-time dimensions. In higher dimen-
sions one can distinguish bosons and fermions by the different angular dependence
of their scattering amplitudes. But for scattering on a line this is of course not
must come possible. Even at the quantum field-theoretic level there are some subtleties. First
flectionless of all, there is no spin-statistics connection in (1 + 1)-dimensional QFT, for the
t of all, the excellent reason that there is no spin in one space dimension*. Furthermore,
fusion rules although the behaviour of wave functions under interchange of particles is well
: breathers) defined even for particles “living” on a line (and we use it to define the notions of
fermions and bosons), it is physically rather irrelevant. For instance, We will see in
theory shows. )
from that of &
ntz spin and statistics (commutation relations) for

ghly nontrivial * Although there is a connection between Lore
fields, see tef. (44] and references therein.
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sect, 4 that particles which by this definition are called bosons can neverth
obey an exclusion principle. This fact will lead us to the notion of the “type”
particle [27], to be defined in sect. 4. In certain respects this notion replaces the
fermions and bosons in 1+ 1 dimensions. '
(1) ke
3.4. Ef Al
This model contains 6 particles which we label by 1,1,2 3,3, and 4, acmrdii'tg
to increasing mass. In a convenient normalization these masses are i \ !

m,=m1=1. m2=¢§s

m;f.&l‘=(1—|—ﬁ){fﬁl }n~=1+ﬁ

The fundamental amplitude is [6,7]
$,(6) =£(0) £.(8) £(0) ,
and the corresponding Z-factor is
Z(0) =f_ () f 11, (0)f_1_(8)f-245(0).- (39?',_

The full set of S-matrix elements (without Z-factors) is given in ref. [7). The mo_déf
exhibits a Z, X Z, symmetry, with the particles 1, 1,2,3,3,4 carrying the Z;-charges
1,2,0,1,2,0, respectively; the Z, exchanges particles with their antiparticles. This: ['
I
)

is also the global symmetry of the perturbed CFT that this S-matrix theory SSSs
presumably describes [6,7], namely the tricritical three-state Potts model (€= )

14
A

perturbed by the thermal operator ¢, ,, of weight (4, 3).

—t

35. BEYY

The seven self-conjugate particles in the model will be labeled by @ = 1,2, .-
in order of increasing mass. Their masses, normalized so that m, =1, are

my=2cos(557), my = 2c0s(57), my=2cos(57),

ms = heos( S )cos(Fm),  mg=acos(im)eos(Gm),  ma= 4 cos( & )cos(37) < 08
(@

The minimal amplitude for the scattering of two lightest particles is [4-6]

S“(ﬂ) = -F%(B)F%(ﬂ) s




i neverthelegg :
¢ “type” ofa
places that of

| 4, according
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and the corresponding Z-factor is [5]
211(6):‘Ffb(e)F%})”,(@)F,,g_,,(ﬁ). (39)

The full S-matrix (including Z-factors) is given by Christe and Mussardo [5]. The
symmetry of the theory is Z,, with the particles 1,2,...,7 carrying the conserved
charges 1,0,1,0,0,1,0, respectively. The theory was proposed [2] to describe the

1

_energy perturbation (the primary field ¢, , of weight (45> 750 of the tricritical

Ising model (¢ = 7).

16. EQ

N 'f We normalize the masses of the eight self-conjugate particles @ =1,2,....8 in
W . the model to 4 1 ——
m =1, m,=2cos(¥7), my=2cos( 557 ) »
(35) m, = 4dcos( tw)cos(5m),  ms =4cos(im)cos( &), me= 4cos( Lo )cos(577) 5
m, = 8cos*( L )cos( ), my = 8 cos?(+m)cos( {57) - (40)
(36)

7]. The model
‘he Z-charges
part. s. This :
matrix theory
model (¢ =%

All the S-matrix elements can be obtained from the fundamental amplitude [2]

S,,(8) =F (6)F\(8)F:(0), - (41)

and the corresponding Z-factor [16,45]
Z,,(0) :F—h(e)Fﬂiﬁh(g)F—%—b(e)Fféﬂub(e)~ (42)

The theory does not have any nontrivial symmetry. The same is true for the
perturbed CFT it is proposed to deseribe [2] namely the Ising model (¢=%)
perturbed by the weight (2. 1) magnetic operatar d, s

We remark that tables of the full S-matrices (including Z-factors) of the E{'-

E{ and E{ -related theories have been published in ref. [20].

37, GENERAL COMMENTS ON THE ABOVE S-MATRIX THEORIES

We now make some comments on the above S-matrix theories, showing how
many details of their structure are related to (affine) Lie algebras. The initial
indication for such a relation was the fact that the spins of the IMs of perturbed
CFTs. whose existence could be established using the counting argument, turned
out to be the first few exponents of some affine Lic algebra £, modulo its Coxeter
number /i ; (the latter periodicity can be recognized when /i ; is relatively small);
in addition, the number of particles in the S-matrix theory related to this algebra is
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equal to the rank r of # [2], and the smallest common denominator of the ration: Cont
subscripts a of the basic building blocks £.(6) appearing in the S-matrix {158 /
Coxeter number A 5 (bh 3 for the A3 -related models). For completeness, We gh

here the relevant affine Lie algebra data [12]: '

4t "~ A are

AY h=n+1, s=1,2,...,m,
AG), h=2(2n+1), - sect. S

DY: h=2n—1), s=1,35....2n-3,n—1, £ of the

EL: L h=12, = s=1,457811,

= relatio
EY: s=1,5,7,9,11,13,17, ' ' untwis
£ ording
E{: s=1,7,11,13,17,19,23,29. of the
' e Lie al;
discre!
It was then realized [2,8,6] that the same algebra plays a role in one of the the al
possible constructions of the unperturbed CFT: Except for £= A2, this CFT cd Dynki
be specified succinctly [6] as being the first model of the W(.#) unitary series symmi
Here £ is the ordinary simple Lie algebra related to . This construction of the symmi
CFT also corresponds to the coset (£, x )/ #,. The Zrelated massive thi conne
discussed earlier, is proposed to describe the perturbation of this CFT by tion [
W(#)-primary field of weight (2/(h ,+ 2),2/(h 4+ 2)). This primary field @ Dynki
preserves [8] the global symmetry common to the whole W(:#) unitary seri 1, is i
which is indeed always a part of the symmetry of corresponding S-matrix in sub
However, in many cases the symmetry of the CFT is larger, as it can of the
alternative constructions, and the S-matrix theory should have this larger ordin:
as well, if the perturbing field does not break it. To demonstrate this P tation
consider the (Z, X Z,)-symmetric tricritical three-state Potts model, which congr
member of both the (generically Z,-symmetric) W(A,) (Virasoro) and the (g from
cally Z-symmetric) W(E,) unitary series. The weight (3, }) perturbing field relate
serves both the Z, and the Z; symmetries, and this is consistent with the featule conn
of the E{)-related S-matrix theory of subsect. 3.4. : the e
The A?.-related S-matrix theories do not follow the above regularity. AS @ [ those
mentioned, they describe the perturbation of a family of nonunitary ;
(Virasoro) minimal models. The connection to a coset construction is presumas
only a formal one, as indicated by the fact that the central charge of these CEl 4

equals that of the rational coset construction (46] (A%)) _,— ¢ X(A‘é},)l/ww-i_ g

I
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Considering the S-matrix theories, it was further noticed [4, 16] that the masses
in the Zrelated S-matrix theory are just (up to an overall factor) the components
of the Perron—Frobenius vector of the incidence matrix /,* The twisted affine
algebra A2 does not have an associated ordinary Lie algebra (or rather, A,, or
A, are not what we want): in this case the above statement still holds, if we use as
a “generalized incidence matrix” the matrix obtained from [, by replacing the 0
in the last entry along the diagonal by |. This matrix will further show up in the
analysis of the structure of the A7 -related S-matrix theories (see below and in
sect. 5). Parenthetically we remark. that for the ATFTs the masses arise as the
square roots of the eigenvalues of a different matrix related to the root system
of the affine -# [5,16-18]. It is surprising, but true, that these two recipes
for calculating the masses coincide for all Lie algebras, as has been shown by
Braden [48].

It seems from the above discussion, that one could just as well argue for a
statiom-between the S-matrix-theories and ordinary simple Lic algebras: For an
untwisted affine Lie algebra the exponents coincide with those of the associated
ordinary Lie algebra, and the masses are related to the (Perron—Frobenius vector
of the incidence matrix of the) ordinary Lie algebra anyhow. Another relation to
Lie algebras, which can also be interpreted in two different ways, is seen in the
discrete symmetries of the S-matrices, On the one hand, the symmetry of each of
the algebra-related (minimal or nonminimal) S-matrix theories is that of the
Dynkin diagram of the affine algebra # (the “extended” Dynkin diagram). This
symmetry group is [49), in the untwisted cases, the semidirect product of the
symmetry of the Dynkin diagram of # and Z(G), the center of the unique simply
connected group G whose Lie algebra is .#. Note in particular that the decomposi-
tion (49] of the dihedral symmetry group D, - common to all the D" (n>3)
Dynkin diagrams — into different semidirect products, depending on the parity of
1, is in accordance with the symmetries of the corresponding S-matrices discussed
in subsect. 3.3. On the other hand, the same symmetry shows up in the properties
of the representations of the related ordinary Lie algebra: The symmetry of the
ordinary Dynkin diagram is mirrored by the conjugacy properties of the represen-
tations (D, is the only case where the Z, conjugation is “clevated™ to S;), and the
congruency class of a representation [S0] corresponds to its Z(G) charge. Apart
from the fact that the Toda theories which are presumably relevant here arc
related to affine algebras, the only indication that supports the affine algebra
connection is that for the models of subsect. 3.2 the spins of the IMs coincide with
the exponents of the twisted affine Lie algebras A2 which are different from
those of any ordinary Lie algebra. However, these models are peculiar in many

* The incidence watrix of n Lie algebra is 2— €, where € is its Cartan matrix. The Perron—Frobenius
vector of @ matrix with nonnegative entries is the unique eigenvector all of whose components can
be chosen to be positive. It corresponds to a real, nondegenerate eipenvalue, which is not smaller
thin the magnitude of any other eigenvalue [47L

e

— )
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other respects, and therefore this indication is not absolutely compeHing. It
an open question, precisely which structure should appear — and hopeﬁjlly_.
understood — in the classification of diagonal S-matrix theories. For convenienc
we will continue to refer to the S-matrix theories under consideration as related 1o
affine Lie algebras. T
We mentioned that the eigenvector of the largest eigenvalue of the incidenca
matrix of # gives the masses of the Zrelated S-matrix theory. In general,
eigenvalues of the incidence matrix of a simple Lie algebra & are of the fo
2cos(ws/h 4), where s runs over the exponents of & [51]. We noticed that th
eigenvector corresponding to 2 cos(s /A ) is the vector ¥, = (%) assembled
of the coefficients " appearing in eq. (16), where a runs over all the particles
the model. In other words, eq. (17) is satisfied for s any exponent (mod 2h ) of:
and all a, b and ¢ whose three-point coupling g5, # 0 in the Lrelated S-matrix
—theory; if-we-use for y2=—2; =, the-ath-component of the eigenvector-of 15w
cigenvalue 2cos(ws/h ). This is also true for A2, if one uses its “generalize
incidence matrix” defined above, provided that h, is taken to be 2n+ 1 and &
runs aver the first n exponents 1,3,5,...,2n — 1 of A3 Note that for D, n even
there are two IMs of spin s=n—1, corresponding to the two eigenvectors o
eigenvalue 0. One of these two IMs, and the unique IM of spin n — 1 in the Df
models with # odd, act nontrivially only on the two fundamental particles f and £
with y,_; = —v,_. The sole “purpose” of this.IM seems to be to distinguish the &
two fundamental particles, and thereby make the model reflectionless. We sec that
in any of the Lie algebra-related S-matrix theories of this section with r particles
there are r linearly independent r-component vectors ¥,- We therefore conclud
that we can distinguish all particles by their charges, as claimed in sect. 2.
Ignoring for the moment the case of AG), the fact that the masses are just some
eigenvector of the incidence matrix of & allows us to uniquely associate thes
masses to the nodes of the Dynkin diagram of .£ (this was also noted in ref. (20},
and for Eg in ref. [16]). Our labeling of the particles in the previous subsections
has been chosen accordingly. For A, our particle labeling corresponds to the
standard labeling of notes on the Dynkin diagrams. The same is true for D,, WI
fifo (£, f) for n even (odd) corresponding to the nodes usually labeled “n "
and “n” (the spinor representations) of the Dynkin diagram of D,. For Eg, Ey-ﬂi‘. /
Eg our labeling particles corresponds to the somewhat unusual labeling of rodts;
indicated in fig. 1.
Recall that the fundamental or primitive [52] representations of a Lie algcbra___
(these are the representations whose highest weights are fundamental weights) €2
also be associated to nodes of the Dynkin diagram of 4. Interestingly, if 2 no
corresponds to a primitive representation of greater dimension than another, theil
(excluding the fundamental particles in the D{" models, in general) the pa e
associated to the first node is heavier than that associated to the second node
ref. [16), again for Eg). Now the reader will not be surprised anymore to learn &
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2
g U
1 3 4 3 1
3
B 1
2 5 7 6 4 1
4
o i
2 6 8 7 5 3 1

Fig. 1. Our root (particle) ordering for Eq, E; and Eg.

the fundamental representation(s)* of the Lic algebras A, D,, Eg, E; and Ey
exactly correspond to the fundamental particle(s) (in the sense of sect. 2) of the
related S-matrix theory.

One might wonder whether the massive fusion rules (see sect. 2) of the
Zrelated S-matrix theory are also related to the tensor-product fusion rules of the
primitive representations of #. Of course, the massive fusion rules cannot be
identical to the tensor-product fusions, because the massive fusions neither have
an “identity” nor do they describe particles corresponding (o any of the other
nonprimitive representations, appearing on the right-hand side of the tensor
product of two primitive representations. But one could ask whether the two types
of fusion rules coincide if we restrict the tensor-product fusions to primitive
representations only on their right-hand side. The massive fusion rules of the
Al.related S-matrix theories then in fact equal the restricted tensor-product
fusions of A,. However, for D,, (n=3), Eg, E; and Ey the two types of fusion
rules do not agree: For these Lie algebras the adjoint representation is one of the
primitive representations, namely that corresponding to node (particle) number 2
for D,, E, and E., and number 1 for Ey. The tensor product of any representation
with its conjugate representation always contains the adjoint representation, but
the corresponding statement for the massive fusion rules is not true.

The massive fusion rules exhibit a rather peculiar structure. On the one hand
they are not associative and have no “identity”, which makes them look rather
“Structureless”, but on the other hand they satisfy the following noteworthy
regularity (which was also noticed in ref. [20] for ATFTs, by determining the
nonzero three-particle couplings in their lagrangians): For every particle ¢ in the

*The fundamental representation(s) of a Lie algebra are the one or fwo primitive representations,
which, by taking tensor products among them, generate all representations of the Lie algebra.
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“related minimal or nonminimal theory
Z Mz =h o~
ab

where the double sum is taken over all the particles a, b in the model, and in ‘r.;;-
Z=AD case h .+ must again be read as th 3= 2n + 1, as everywhere else i in
remdmder of this section. Note that for this formula to hold, we must ouunt *n[,
odd-order poles as giving rise to bound states. :
Finally, we comment on the Z-factors. Assume that the Z-factors of a theo

depend continuously on some parameters, and that the full nonminimal $-maty ix
becomes identically 1 as one of the parameters, say b, approaches a certain val [
(which we can choose to be 0). In other words, the Z-factors allow for a trivi :
weak coupling limit. Extending an argument in ref. [45], it is then easy to seeﬁm

for the Theories described arlier, the bootstrap equation applied to the fundamen

tal particle(s) uniquely determines the Z-factors to be the ones presented aboye,
Note that these Z-factors depend only on the parameter b. Since none of thc 3
Z-factors of the two-particle amplitudes should have poleq in the physical strip, b
must be restricted to lie in the region [0,2/k ] for the #related S-matrix theor
The Z-factors remain unchanged [5, 16, 22] under the substitution b — (2/&_,)—'
The conjectured [5, 16,21, 45] explicit dependence of b on the ATFT coupling
(that agrees with low-order perturbative calculations) reads g

2 B
b s 3
(B) h,1+p2
in a convenient normalization [22] of B. Assuming it is correct, the Z-factors, and =5
hence the full nonminimal S-matrices, are invariant under the substitution B = Ifﬂ
which connects the strong and the weak coupling regimes of the quantum afﬁn
Toda theories (cf. ref. [22]). ‘

|1 I :
4. The thermodynamic Bethe ansatz and the finite-size scaling coefficient *_ .

|

Consider a critical (classical) statistical system on a torus of perpendicular vjcl :
of length R and L. In the limit of an infinitely long cylinder L — o, the frﬂé'
energy per unit length F — equal to the ground-state energy F, of the correspond
ing two-dimensional CFT - is given by [53, 54]

T \
F=hR~EE+o@y

"l
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plané; the second universal term is proportional to what we will call the finite-size
scaling coefficient ¢ = ¢ — 12d,), where ¢ and d,, are, respectively, the central charge
and the lowest scaling dimension of the CFT to which the critical system renormal-
izes. For a unitary CFT (on the torus) the lowest scaling dimension is that of the
vacuum, d, =0, and so ¢ =c.

As was demonstrated by Al.B. Zamolodchikov [27], one can calculate the
finite-size scaling coefficient ¢ of the UV limit of a purely elastic scattering theory
directly from its S-matrix, using the so-called thermodynamic Bethe ansatz. This
method is, roughly speaking, the usual Bethe ansatz “in reverse”. In the usual
Bethe ansatz one starts with a hamiltonian formulation of the theory in question,
and uses an ansatz for the wave functions to exactly diagonalize the hamiltonian,
obtaining the spectrum and sometimes even the S-matrix of the theory (for a
review of the Bethe ansatz see ref. [55]). The sucecess of the Bethe ansatz for a
given theory is related to the existence of infinitely many IMs. In the thermody-
namic Bethe ansatz employed here, this logic is reversed, to accomplish a more

¢ none of the
hysical strip, b
matrix theory.
- Q2/h,)-b.
T coupling B

(45)

Z-fr rs, and
tion » = 1/B
1antum affine

efficient

ficular cycles
> <, the free
correspond-

(46)

the infinite

limited goal: One uses the known spectrum and scattering matrix clements of an
integrable QFT to calculate the thermodynamics (equivalently, finite-size effects)
of the theory, by assuming that its finite temperature states are described by Bethe
ansatz wave functions. We will not try to justify all of the assumptions involved in
the thermodynamic Bethe ansatz. However, in order to make this paper relatively
self-contained, we would like to outline the steps leading to the main result, eq.
(67), for the finite-size scaling coefficient é.

The basic idea is as follows. We want to calculate the ground-state energy E, of
the relativistic QFT described by the purely elastic scattering theory, living on an
infinitely long cylinder of circumference R. In standard QFT conventions, where
the bulk term vanishes, this ground-state energy has to be of the form

wé(r)

6R (47)

Eo(R) =

Where ¢ (by dimensional arguments) is a function of =R /R, alone; R_=1/m,
being the largest correlation length, corresponding to the smallest mass m, in the
theory. We will call é(r) the finite-size scaling function of the theory. &(0) is of
Course the finite-size scaling coefficient ¢ of the CFT describing the UV limit of
the massive scattering theory. To calculate E,(R) using the thermodynamic Bethe
ansatz, consider the partition function Z(R, L) of the QFT (in its euclidean
version) on a torus of perpendicular cycles of length R and L. There are two
Natural ways to pass to a hamiltonian formulation of the theory. We can choose
time in the L direction. Then, as . — s, we have In Z(R, L) = —LE,(R). Alterna-
tively, we can choose time in the R direction. Now, in the L — o limit Z(R, L) is
the partition function of the QFT based on an infinite one-dimensional space and
Periodic in time (period R), or, equivalently, at finite temperature 1/R (we use
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units where #, ¢ and Boltzmann's constant are equal to 1). As L — = we nuw_' .
In Z(R L)= —LRf(R) where f(R) is the free energy per unit length of our |

(all the information we need to know about these wave functions is contamed

the scattering matrix elements of the theory, as will be explained below). This

allows us to obtain the energy levels of the system, and thermodynamics then g

the free energy f(R). The relation Eg(R) = Rf(R) and the R — 0 limit of eq,

finally yield the finite-size scaling coefficient ¢.
In more detail, consider the (finite temperature) QFT on a space of length

with periodic boundary conditions. Let n denote the number of different partic

species in the theory. Consider N particles labelled iy,...,iy, N, of which are

species a, at positions x;,..., x; . The space of all possible configurations of these

particles decomposes into N! regions, corresponding to the N! orderings of the

particles. Each region contains a so-called “free region”, in which all particles are
far away from each other, i.e. |x; —x;| > R_ for all k and /, and behave like fr
particles with well-defined momenta ;- So, in the free regions the wave funci

is just proportional to that of free particles. Besides this fact, all we have to know i
the following: The wave function in the free region where x; <X,

from the one in the neighboring free region where X, > X, by muluphcauon by
S, 8, — 6, ). Here 0, and @ are the raptd:tles in the free regions. The.
requnrcment ‘that the wave funcnon be periodic (period L) in its N argumcnts." _
leads to

etbmisinns, [T g.(g, — B)=1, fori=1,2;..;; N

Jijei

From now on we drop the double index notation for particles, as we already did in -
the last equation, and assume that the 6, are ordered, 6, <#,,, for all i
1,2,...;N—1. Introducing the phase shifts 5, (6, —6))= —iIn$,(6,~ 6), the

logarithm of eq. (48) can be written as :_1

)
Lm;sinh@,+ ). 8,(6,—6)=2mwn, fori=1,2,...,N,
Jij#i

=
with the n; some integers. So we see that periodic boundary conditions, rathes
trivial for a free theory, lead to a set of N coupled transcendental equations for
the rapidities in an interacting theory, the Bethe ansatz equations. We Stress '
these equations involve the physical particles in the spectrum of the theory, not!
pseudo-particles of the usual Bethe ansatz method [55], and consequently ﬂ"
rapidities 6, are real.
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The thermodynamics of the system will be dominated by certain distributions of
es 8, and the n;, with the distributions of these quantities constrained

¥e now

of our the rapiditi
Jme that the! by €d- (49). Before we can determine these equilibrium distributions (in the
we functions thermodynamic limit), we have to take into account the constraints on the allowed

rapidities arising from the identity of particles.

The N-particle wave function must be symmetric (antisymmetric) under the
erchange of identical bosons (fermions) of the same rapidity. Let particle a be a
¢ unitarity condition (4) we see that $2(0)=1. So

contained i
belOW), i "?-i:
cs then give

int

it of eq. (4' poson or a fermion. From th

e there are tWo possibilities:
of length 'T" (i) S,.(0)= —1: This is incompatible with the symmetry of the wave function
rent under interchange of identical bosons a with the samc rapidity. Therefore, if
which are of =~ $0)=—11two bosons of species @ are not allowed to have the same rapidity. We

will refer to such particles as being of fermionic type. If a is a fermion there is no

restriction and we will say that it is of bosonic type.
Y= 1: Here the situation is reversed. ldentical fermions are not allowed
bosons are of bosonic

ions of these 1

particles are JE8 (i) S,,0
av i hiave (he same rapidity, e arc of fermionic type;-and
type.
The above discussion can be summarized by introducing the type of a particle. If
(- 1)f+ = +1 indicates if a is a boson or a fermjon, respectively, the type of a is
defined by t,= —(— 1)f«s,,0). Then ,= +1 corresponds to a particle of
In theories with one space dimension the
evant — at least if the particle is a fermion

ave function
ve to knowis
 is obtained
tiplication by = I
regions. The = fermionic or bosonic type, respectively.
J arguments, =S statistics of a particle is physically irrel
‘:'IJ. or a boson — because it becomes inextricably mixed up with the interaction: As we

L have just seen, for instance, an exclusion principle holds in a system of bosons with

(48) zero-rapidity scattering amplitude — 1. In fact, this is the significance of the type of

N a particle — it tells us whether an exclusion principle holds. In this sense, particles

4 of fermionic and bosonic type in one Space dimension are the analogues of
e fermions and bosons, respectively, in higher dimensions. We should remark that in

Iready didin =4
for all i= : most of the “restricted sine-Gordon models” mentioned earlier, some of the

0, — 9/_)’ the I' particles seem to obey “exotic” statistics [24,25]. The thermodynamic Bethe ansatz
i remains to be generalized to such theories.

‘!E' Let us also mention that it is not clear if particles of bosonic type can actually

i (49) B - . exist in any consistent interacting theory. Within the context of the “true” Bethe

’ E _"Jf ansatz for the nonlinear Schrodinger model, it has been shown explicitly that

_‘.'5'.:[;' identical rapidities do not 0ccur; this also appears to be necessary to construct the

.If physical vacuum in this and other theories [57]. We will see in sect. 5 that all

tions, rather 5\" particles in the models described in sect. 3 seem to be of fermionic type. For the

quations for sine-Gordon model this can of course be explicitly checked, because there we not

‘e stress that s, but also which particles are fermions and which

«ory, not the :
lently all the _' o holds for all particles in any interacting t
counterexample.

m' only know the S-matrix element
1 are bosons. One would certainly like to prove in general that an exclusion principle
heory in 1+1 dimensions — or give a
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Eq. (49) can be analyzed in the thermodynamic limit where both L and all'\’
become very large, and the N, /L are finite. We can then introduce the den
plA(#) as the number of particles of species a with rapidities between 6 — 140
8+ 146 divided by L Af. We are assuming that it is possible to choose the
intervals A@ (Af can depend on @) large enough to have an appreciable numberof’
rapidity levels in them, but small enough so that the p{®(8) vary only on a .';"
larger than several 46. Let us also introduce for each fixed a = 1,..., n the subset§
n{® of the set of all the n, in eq. (49), where i is now running only over
particles of species a. Let (% be the rapidity values corresponding to these nif
Eq. (49) can then be written as Vi

n e
m, s:nﬁ‘ﬁf“"+_z"f : 'd-gf-aﬁ(-gfm fe‘jp‘,"”('a“) -
S
Consider the functions /(@) defined by
m, n .
J(g) = gsmhﬂ + Y (5,,%p®)(0),
b=1

where = denotes the convolution

+
=df’
(3+0)(0)= [ S-8(0-0)p(0). (52),

—

Once we know more about the densities pl™ we will see that these functions

monotonically increasing functions of 6. Assume this to be true for the momeilas

Then the sequence of n!® is monotonically increasing with i. We see that if
J@(B) = n® /L, then 8= 6§*). Such a @ is called a root of species a. Note that
density of roots of species a is p{®. If the increasing sequence of n; skips
integers there will be values of @ not among the #*) such that LJ (@) equais
these skipped integers. Such values of 6 will be called holes of species 4 (___
bosonic type particles “an integer is skipped” even if n{%); —n{® =1, see beloWis
For particles of fermionic type the n{*" must form a strictly increasing sequé
of integers because these particles are not allowed to have the same rapidity
we see that n/@, —n/@=1+n{®) > 1, where n{) is the number of holes of spect
a between the rapidities 6/ and #?),. We can therefore define a density of St




L and all N,
ce the densj

to choose the i
ible number of

nly on a scale
, i the subsets

only over the

; to these n{®,
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(roots and holes) for the particles of species a, p@ = p{*’ + p{", by

d m i
(@(g) = — J@(g) = — 2 cosh@ + (b)
P ( ) de ( ) ZWCOS 0 bgl (()Dab*pl )(0)’

where ¢,,(8) is given by
d d
(Pab(g) = E6ub(0) = flﬁln Sab(e) . (54)

The explicit form of the ¢,,(#) in purely elastic scattering theories will be given at
the end of this section. Here we just note that the unitarity of the S-matrix, eq. (4),
implies that @,,(—6) = @,,(6).

On the other hand, if the particles a are of bosonic type they are allowed to
have the same rapidity values, and in this case n{9| —n{” =n{"}>0. Here the

(52)

functions are
the moment.
e see that if
Note that the
1, skips some
7<) equals
ecies a. (For
[, see below.)
sing sequence
> rapidity. SO
les of speci€s
nsity of states

density of states p‘“X(@), defined by the same equation as above, equals pi(6).

Recall our assumption that the rapidity axis can be divided into intervals of size
A@ over which the densities do not vary appreciably, and the number of roots
Lp'(8) A6 and the number of holes Lp{(#) A8 in each of these intervals is large.
Hence there are

[L(p\®+p§)(0) A6]!

[Lpt(6) a6] ! Lpi"(6) A6]! (55)

ways to distribute the roots (particles) and holes in the interval A6 giving the same
“macroscopic” densities p(* and p{. The logarithm of this expression gives the
contribution of A# to the entropy*. The total entropy per unit length is thus
given by

12

slow, o] = X s o 0l”]

a=1

= /jmd"[(pi‘”+p(h”))ln(p§”)+p(h”’)—pi”)ln P =i In 0] (56)

a=1

Since the relation between p'@ and p'®, eq. (53), holds for both types of particles,
it is convenient to consider s, as a functional of p!® and p!*. The functional form

*The following variational method to calculate the thermodynamics of a system solvable by the
Bethe ansatz was introduced by Yang and Yang [56].
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of s,[p‘, pi®] is then different for particles of fermionic and bosonic T type
obtained by substituting pi" = p® —p{®) and p{ = p®, respectively, in these cases.

Using the thermodynamic relation F=E — 7§ (here T = 1/R), the free enerpy
per unit length f is determined by minimizing it as a functional of the p*® and p('
these densities being constrained by eq. (53). Upon minimizing

Rflp,p.]=Rh[p,]—s[p,p,],

where

hlp,]= ):f " d0 p(8) m, cosh

a=1]

is the energy per unit length of a given rapidity distribution, one finds that the!
extremum—condition 1nvolvcs-on!y~the—ratmsm“’(a)/p(‘"(ﬂ) ~Let-us—introduce
€,(8) by

(n)(ﬂ) —f,{ﬂ]
P(0)  1te «®’

and define
L,(6) = +In(1+e "),
where here and in the following equations the upper and lower signs refer to th

particle @ being of fermionic or bosonic type, respectively. Then the extremum e
condition can be written in the unified form .

Rm, cosh@=¢,(8) + }E (e % Ly)(8)
bl

for both types of particles. The extremal free energy per unit length f=f(R) i5

then determined by inserting egs. (58), (61), and (53) into (57). Doing this, an ‘
using Eo(R)=Rf(R)= —mé(r)/6R, we obtain the following expression for the {
finite-size scaling function (with r=R/R_): e

&(r) = — ‘Ef dBLa(e)m rcosh .

a?] =

Here the €,(6) are determined by the nonlinear integral equation (61), and W gl
have normalized the masses such that the smallest mass is 1, i.c. 1, = ma /M=
m,R,. Rt -1
Thc r—0 limit of this expression can be explicitly evaluated, as we will S&¢
presently. By taking the derivative of eq. (61) with respect to 8 we see that eaw
becomes constant in the region —In(2/r) <@ < In(2/r) as r— 0. Let €, be the




ic type and j5
n these cases,

e free energy
ypi (a)
P and pgf),

(57)

(58)

inds that the
us introduce

e

»
Tli=g
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value of €,(8) in this “flat region”. (For the nonminimal S-matrices the €, do not
reach a finite limit as r— 0, rather, they diverge like In(m r) in this limit.
Nevertheless, all caleulations presented here go through as for the minimal
s.matrices where the €, are finite, see sect. 5.) Then

n
e, =% X Ny In(1te =), (63)

[
h=1

where we introduced the symmetric matrix N by

e O | _
No=~ [ 5=0u(® = = 5=(8,(=) = 8,5(==)).- (64)

In the cases we are considering, there is always a unique real solution to eq. (63)
for the €, (see below). We also sce that eq. (61) implies that the €,(f) are real

(59)

(60)

s refer to the
1€ extremum

(61)

h f=f(R)is
ing this, and
ssion for the

(62)

‘61), and we
=m,/m=

we will seé
se that €,(0)
et €, be the

functions for any 7. This proves our previous remark that-the-J“X6) of eq. (51) are
monotonically increasing functions for the case of fermionic type particles: By
definition of p'“X0), eq. (53), this is equivalent to showing that p'“'(8) > 0. But
since pi“(@) is manifestly positive, the reality of €,(@) implies via eq. (59) the
positivity of p'“!(8) for all a. Generally, the interpretation of p“(8) as the density
of states requires it to be positive in a consistent theory.

Let us return to the evaluation of the » — 0 limit of eq. (62). Since €,(0) and
therefore L (@) are even in 8, cf. eq. (61), we can replace the lower boundary of
the integral in (62) by 0 and multiply it by 2. We then note that the size of the
region of integration where cosh @ can not be approximated by se” is of order 1,
and furthermore the integrand there goes to 0 as r— (0, hence this region gives
a negligible contribution to the whole integral. Outside this region we can re-
place cosh # by 3e” and also replace €,(8) and L (8) by €,(8) and L(0)=
£In(1 + ¢~ %), respectively, which are determined from

N
I, e =E,(0) + Y (@us* Ly)(0). (65)
b=1
Note that the €,(#) and L ,(8) are now constant for all @ < In(2/r), and since
€,6) grows exponentially as 6 — = (cf. eq. (61)), L, (6) decays as a double
¢Xponential in this limit. At this point we have

(i

&0)=— L lim ["doL,(8)4nm,e". (66)
TS 0<n

e

We now replace mit, e in this equation by the derivative of the right-hand side of

€q. (_65_} with respect to 8. To find ¢ = &(0), one then needs only general properties
of L (6) and ¢,,(6), namely that L (@) is constant for 6 < In(2/r), it decays
fapidly for 0 < In(2/r), and that ¢,,(8) is an even function of @ which falls off
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exponentially as one goes outside a region of order 1 around 6 = 0. After. where Sgn ¢
integrations by parts, we arrive at our final result: -

~ We see th;

minimal S-

AD-related

eq. (63) fo

rre)S theories cc

.!.'e_r+si1 * L Then Nab

Here the e, are determined by eq. (63), ¢, is the type of the particle a as defis
earlier in this section, and L(x) is Rogers’ dilogarithm function [58]

L(x) = ‘_‘%f(:dy[ Iny ; In(1—y)

of each of
egs. (64) a
the contrit
¢, depend
particles™ |
affine Tod
of the Lie
that in the
particles :
a priori i
indication:
must obey
possibilitic
those whi
theories a

] - — ol discussed i

L=y y
EI-;I T
We see that we can associate a finite-size scaling coefficient &, to each particle "
species in the scattering theory, with the total ¢ given by their sum. The individ _'
¢, are obtained by evaluating at ¢, either one of two universal functions 61@."
depending on whether a is of fermionic or bosonic type, respectively. Note the:
following properties of these functions: &, (¢) is defined for all real €, ¢_(e) for.
positive e. Both are strictly monotonically decreasing functions, approaching
€=+ ¢ (0)=1and é,(—0)=2¢ (0)=1. In eq. (67) we gave two altern
expressions for ¢ . The first is useful because known sum rules for the Roge
dilogarithm function can be used to evaluate & in certain models, as we will see il
sect. 5. The second form is more suggestive, however. It shows that e, /3R is thes
entropy per unit length of a one-dimensional idea quantum gas of ﬂ
particles (dispersion relation energy = [momentum|), at temperature 7= 1/R @ nd.
chemical potential —e,/R. Note that in agreement with carlier remarks in (h
section, particles of fermionic (bosonic) type are taken to correspond to fermio 'j‘
(bosons) in the calculation of the entropy.
Eq. (63) determining the e, involves the matrix N =(N,,), eq. (64). Since foFs Our res
our diagonal S-matrix theories the S,,(6) are products of the building blocks fol fn'
of sect. 2, we only have to calculate ¢,,(8) and N,, for the f,(8). If S,,(0) ,
[T;£.(0), then ¢,,(8) = X;¢[f, X6) and N,, = £,N[f, ], in an obvious notation. AS _
simple caleulation gives Here /1 is
- with the r
sin am 5 S-matrix |
cosh6—cos e k. the “gene
At;}' A(f.:,
Nlf)J=(=|a])sgna for —1<a<l, 7 tions of t]

31, MINIM

_— ; d —_—
#l£)(0) = ~i—oin £, (0) = -




= 0. After a fey

i

(67a)
L. (670)

ticle a as defined
58] VI
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where sgn « is the sign of a (we set sgn0 = 0). This implies

(70)

o=

N[F,]=sgna for —3<a<

We see that each f, with 0 <a <1 gives a positive contribution to N. All the
minimal S-matrices of sect. 3 therefore have N,, > 0 for all a and b (except for the
A®-related minimal model where N=N,, = 0). It is easy to see that in such a case
eq. (63) for the e, has a unique real solution. Furthermore, in all the S-matrix
theories considered in this paper the building blocks f, occur with rational «.
Then N,, is rational for all a and b, implying that the e are algebraic.

5. Calculation of ¢ for purely elastic S-matrices

We now apply the general formalism of sect. 4 to the explicit S-matrix theories
discussed in sect. 3, thus finding the finite=size scaling coefficient of the UV limits

, to each particle %
m. The individual 58
functions ¢ ,(e), " ].‘
wctively. Note the
real e, é_(e) for
approaching 0 as =8
/e two alternative
s for the Rogers =
cas  will see In SN
at ¢, /3R is thes
gas of massless
wure T=1/R and
r remarks in th
pond to fermions.
q. (64). Since for®
Iding blocks ful®)
c(0). If S,4(0) =
vious notation. A

eqs. (64) and (69), find the unique real solution €, of eq. (63), and finally sum up
the contributions ¢, of each particle to the total scaling coefficient ¢, eq. (67). The
¢, depend on the type, fermionic or bosonic, of each particle (there are no “exotic
particles” [cf. sect. 4] in the theories we consider). We know that all particles in the
affine Toda field theories are bosons. Since S,,(0) = —1 for all particles a in any
of the Lie algebra-related models of sect. 3 (with or without Z-factors), this implies
that in the S-matrix theories with Z-factors, which presumably describe ATFTs, all
particles are of fermionic type. For the minimal S-matrices we do not know
a priori if the particles they describe are bosons or fermions. But there are
indications that in any intereacting massive QFT in 1 + 1 dimensions all particles
must obey an exclusion principle [cf. sect. 4], and, in any case, checking various
possibilities, we found that the only ones that lead to any “nice” values for ¢ are
those where all particles are of fermionic type. (So that also in the minimal
theories all particles are bosons.) Now to the explicit results.

5.1. MINIMAL THEORIES

Our results for the N-matrices can be summarized by the remarkable relation

N=I1(2-1)"". (71)

Here 7 is the incidence matrix of/;'}:a’-ordinary {(non-affine) algebra in question,
With the nodes of the corresponding Dynkin diagram labeled by the particles of the
S-matrix theory, as discussed in sect. 3. In the exceptional AD -related cases, [ is
the “generalized incidence matrix” introduced in sect. 3. For the infinite families
AD, A2 and D" the results for the N-matrices and the €, below are generaliza-

tions of those found numerically in a finite number of cases that was large enough
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to establish a general rule (it is then only a matter of tedious algebra to
these results directly). The resulting values for ¢ follow from some remarkabl

e“, which are, as we already mentioned, algebraic numbers. The values of ¢ are

all cases, the finite-size scaling coefficients of the relevant CFTs, discussed

sect. 3. 3
5.1.1. A"). Here the real solution of eq. (63) is

S IS S _am  ((a+2)7) [
et = }:{smﬁ]/sm[(m)]=smn+3un( —— ]/sm’(n+

k=1

fora=1,2,....,n,

and the above mentioned sum rules [58] lead to

2n
n+3"

Z, ., parafermions (see sect. 3). For n =2, eq. (72) reduces to the result of r L
[27], where ¢ =2¢, = 3. "-
5.1.2. A%, As noted by AlLB. Zamolodchikov [27] in the n=1 case, th_" i

Apgt
<4 1y ERer

factorization (25) of A'3) scattering amplitudes into A} amplitudes implies
MIN

am (a+2)w 7 )
“a (2) — pa (1) =i H e d
e (AD,) =% (A}) Sln(2n+3)sm( S )/sm (2n+3

Consequently,
ClAD) =C(AD) =G o(AD)  fora=12,...n,

and &(A2) = 1&(A)) =2n/(2n + 3). Indeed, these are the values of & obtain
for the nonunitary minimal models of central charge ¢ = —2n(6n + 5)/(2n +3)
and lowest scaling dimension dy= —n{n + 1)/(2n + 3).

5.1.3. DV, Here

es= Y (2k+1)=a(a+2) fora=1,2,...,n—2,
k=1

ef=n~—1 where f=f,,f, (f,f) for n even (odd).
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For n = 4, for instance, we find

51=5f1=5f2=0.283937615..., ¢, =10.148187153. .., (77)

which add up to give ¢ =1, as for all n >2. We remark that in general, unlike in
the symmetry-enhanced n =4 case, the mass degeneracy m, =m, in the B
s-matrix theory (k > 1 a positive integer) does not lead to ¢ = Cy.

Note that the same calculations as above show that ¢ = 1 for the sine-Gordon
model at its reflectionless points — as expected. The calculation is identical,
pecause (i) the different signs in some of the sine-Gordon amplitudes (see
discussion at the end of subsect. 3.3) do not affect the N-matrix, and (ii) although
the soliton and antisoliton of the sine-Gordon model are fermions, their zero-
rapidity amplitudes now satisfy $.(0)=8,(0) = + 1, so that again all particles are

of fermionic type.

il 5.1.4. EY). In this case we find
(g
- = sin27  sin3m sin27  sinim
T e€|:e€1= = + — i R o eez-z-j +2 — +_~_1 ,
(73) I smgmw - SIgT sinsm  sinsw
Ty i ) & sin §77 sin 7 sin 57 sin 37
CFT describing e3=e=1+3——+4——7—, e¥=5+9-— 1——, (78)
1e result of ref. Sin 77 Sin 577 sin 37 Sin 5
and ]
1=1 case, the & =& =0235595207..., &, =0.165390903.. .,
s implies
& =G =0091171917..., &, =0.038217704.... (79)
ko
TT) This gives ¢ = 2.
bt 5.1.5. BYY. Here the results are
2,...,n. (74)
es1=2+75, e =1(5+35), e =6+3V5,
c=8+4y5, es=1(33+15/5), e®=27+12/5,
(%)
s of ¢ obtained ' e’ =80 +36V5 . (80)
3
n+5)/Qn* ) Further, we find
¢, =0.228828328... , ¢, =0.184429673 ..., ¢;=0.105461151 ...,
5 L €,=0.084686687... , és =0.049684107. .., ¢, = 0.033540408 ... . ,
o & =0.013369644 ..., (81)
76) S : - '
) (76) o and it follows that ¢ = 7.
A
1]

i [

e ——
i s

="

T S —— = s .

-

e L
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5.1.6. E{. Finally, in this case
et =2+2v2, e2=5+4y/2, e =11+8/2,
et =16+ 12y2, es=42+30/2, e=56+40Y2,
e7=152+108y2,  es=543+384/2 .

The “partial” finite-size scaling coefficients are

¢, = 0.210009676. . . ¢, =0.120269807... ¢y =0.068324712. ..

¢, = 0.050048381... ¢s=0.023056286. .. ¢, =0.018087052...

¢,=0.007688924. .. ¢y = 0.002515159...

and their sum is ¢ = 3.

theories, the €, in each theory increase with the masses m, of the particles;
whence ¢, is smaller the heavier the particle a is (in a given theory), with the S
abovementioned exceptions. gL -

5.2. NONMINIMAL THEORIES g

Next we turn to the S-matrices conjectured for the ATFTs, with the Z-factoré 0 Ii'
sect. 3 included. In this case the structure of the Z-factors leads to the sim } i

b-independent result (as long as 0< b <2/h ) By

N=-1 ()L
Al

C 7

Lr
in all models, where 1 is the identity matrix. Since all particles are of fermionic
type (if any particle were of bosonic type eq. (63) would not even have 2 TEEES
solution for N = — 1), this implies €, = —=, hence &, =1, for all particles a in 3 ~
the theories. It follows that ¢ = rank(.#) for the “related nonminimal S-mattis:
theories. This is exactly the behavior expected of real-coupling affine Todd 501
theories (at least in the simply laced cases), since in the UV, where all masses €4l

1)

be neglected, they become free, This follows from the fact that the intcra'.
term is multiplied by (m,/B8)?, where m, is the mass scale, and the fact that £
does not renormalize. -

To conclude this section, we remark that there is an ambiguity in the N-Mat
and type of free particles. Take for instance the weak coupling limit of an A i ;
We have just seen that for an arbitrarily small but still strictly positive b, N =T




2,
1712...,
1052...,

(83)
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and €, = — for all particles, which are of fermionic type. On the other hand, for
the free theory the S-matrix is trivial, /= 1, hence all particles are of bosonic type
and N =0, consequently e, =0 for all particles. This apparently different result
arises because S,,(0) = —1 for all b(B) > 0; the S-matrix with Z-factors does not
approach the free S-matrix .= 1 uniformly in the weak coupling limit. There is
of course no contradiction in the final result; the contribution of each particle to ¢
is the same in both interpretations, since ¢, (—) = c_(0)=1.

6. Conclusions and discussion

We presented a method for calculating the finite-size scaling coefficient ¢ of an
arbitrary diagonal scattering theory. Applying this method, we calculated ¢ for the
minimal S-matrix theories of sect. 3, that were proposed to be related to massive
perturbations of certain rational CFTs. In each case we found that & equals the
value of ¢ —12d, of the corresponding CFT. Previous work provided strong
evidence that the minimal S-matrices are the minimal part of the full S-matrices of
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the massive QFTs obtained by perturbing these CFTs. Our results feave hardly any
doubt that the minimal S-matrices are in fact the complete S-matrices of these
theories. If one amends the minimal S-matrices with the unique Z-factors leading
to free theories as the parameter b goes to 0, the values of ¢ we obtain show that
indeed (hese S-matrix theories have free bosons as their UV limits. This lends
additional support to the conjecture that these S-matrices are those of real-cou-
pling affine Toda field theories. But note that our methods can only confirm the
general form of the Z-factors, not the dependence of their parameter b on the
Toda coupling B (except that this dependence should be such that the Z-factors
are nontrivial in the range of physical couplings).

In all of the above we are assuming of course, that the S-matrices under
consideration are those of consistent QFTs, For most of the minimal S-matrix
theories, for which no quantum field theoretic formulation is known at present,
this is not obvious. For some perturbations of unitary CFTs, one can calculate
certain correlation functions in the massive theory as perturbation series around
the UV CFT, using special regularization techniques [59]. The fact that this
perturbation expansion is expected [27, 60] to have a finite radius of convergence,
provided one uses IR and - if necessary — UV cutoffs, might be used as heuristic
evidence for the existence of the theory described by these correlation functions.
Further investigation of the massive theories, identifying appropriate field-theo-
retic descriptions of them and calculating some of their Green functions, are
important but very difficult tasks, in general. In principle, it is possible to extend
the bootstrap program off shell once one knows certain qualitative features of the
field content of the QFT underlying an S-matrix theory. One can then calculate
matrix elements of local fields and find representations for the Green functions by
inserting complete sets of asymptotic states (see e.g. ref. [61]). Only in the simplest




524 IR, Klassen, E. Melzer / Purely elastic seattering theories

cases, like the Ising ficld theory [61] of subsect. 3.1 and the models of subsect 32 lagrang
[23] have concrete results been obtained in this way. For the moment, we revard ~ would
the consistency of the models considered in this paper as pure S-matrix theor Lie alg
(even at the multipole level, cf. sect. 2) and the agreement between the values of ¢ is the |
we calculated with those expected, as evidence for the existence of QFTs eon-E. that so
sponding to these models. 4 of the
Our results indicate that hopes raised in the literature for a direct relation. the ma:
between perturbed CFTs and real coupling ATFTs are unjustified. The basis for CFT, s
these hopes was the coincidence of the minimal S-matrices proposed for these Fina!
theories. But, accepting the above conclusions, the S-matrices of the perturbed 8 propert
CFTs are not those of the ATFTs for special values of their (real) coupling. As was - ¢, if de
mentioned in sect. 1, arguments based on conformal field theory techniques ber of
suggest that perturbed CFTs are related to imaginary coupling ATFTs, In the ‘
of the sine-Gordon model there is already a rather clear picture emerging of how IS
certain restrictions (related to an underlying quantum group structure) in the "% nonuni
soliton sector of the model, at special values of the coupling, lead to massive QFTs & CFTs |
describing the ¢, 5 perturbation of the Virasoro minimal models [23-25]. The SIS positive
S-matrices of these theories are correspondingly “restrictions™ of the sine-Gordon ~ * except
model S-matrix at appropriate values of the coupling. They are not purely elastic, Ay Wilson
except for the perturbations of the nonunitary minimal models of subsect. 3.2. negativ
where the solitons are completely eliminated from the spectrum. - n which 1
In fact, in any sense of the word, only “few” integrable perturbations of CFTs = the fac
give rise to purely elastic scattering theories. Under certain perturbations some =S couplir
particles stay massless, and it is not known at present how to describe the 88 tive th
scattering of the massive particles “dressed” with the massless ones. The besf = tained
known examples are [2, 62, 63] the ¢y ay-perturbations of unitary Virasoro minimal fact th;
models, at least those high enough in the unitary series, in the direction thats contint
results in a renormalization group flow to the next lower model in the series. We Of ¢
mentioned earlier that the Zrelated S-matrix theories of sect. 3 (with the. measur
exception of the AF)-related models) are obtained by specific perturbations of thes actuall
first models in the W(#) unitary series. Similar perturbations of the other unitary’ Zamol
CFTs in these series are also known [6, 8] to have nontrivial IMs, whose spins Zil_l:';d Here v
again conjectured to be the exponents of the corresponding Lie algebra. Bf-'Sid Suppor
the first model in each of these series, none of the others can be expected to have s € redu
massive perturbations described by purely elastic S-matrices. The S-matrices OF Nimbe;
these latter models have been conjectured to be related to those of the first mod ’ job eve
by a “restriction”, again coming from a quantum group symmetry [24] (67), w
There are also interesting questions that arise from our discussion of purely. associa
clastic scattering theories (sect. 3). Even though these theories are trivial from " Massiye
point of view of the Yang-Baxter equation, they show a rich and beautiful Numbe:
structure. We think that some questions concerning multiple poles need ﬁll'th tight py
investigation in the context of pure S-matrix theory (i.e. not tied to a perturbatiVey  Dumpg,
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Jagrangian framework as in the discussion of ATFTs). On a conceptual level, one

would like to understand the relation of the minimal S-matrix theories to (affine)
Lie algebras. Can one classify all purely elastic scattering theories, and if so, what
is the precise connection (if any) to the classification of Lie algebras? We remark
that so far no consistent S-matrices, purely elastic or otherwise, “related” to most
of the non-simply laced (affine) Lie algebras have been found. A further study of
the massive fusion rules, and their relation to the fusion rules of the corresponding
CFT, should also be interesting.

Finally, we would like to discuss a conjecture which is suggested by some of the
properties of the finite-size scaling coefficient é = ¢ — 12d,,. Our conjecture is that
¢, if determined with doubly periodic boundary conditions, “measures” the num-
ber of massless degrees of freedom of an arbitrary two-dimensional (euclidean)
QFT. Once we know more about the space of all such theories, we might want to
suitably restrict the class of QFTs to be considered. We certainly want to include
ponunitary (more precisely, non-reflection-positive) modular invariant, rational
CFTs in this space, and it also seems natural to include massive non-reflection-
positive QF Fs- Massiveeuclidean field theories satisfying all physical requirements
except reflection-positivity have been constructed nonperturbatively [64] using the
Wilson renormalization group. For instance, ¢*-theory in four dimensions with
negative coupling constant has a nontrivial, asymptotically free continuum limit,
which most probably violates reflection-positivity {64]. In light of this example and
the fact that the space of QFTs can be (locally) parametrized by the set of all
coupling constants, it does indeed seem very natural to include non-reflection-posi-
tive theories, as apparently — at least in some cases — such theories can be ob-
tained from reflection-positive ones by just reversing the sign of a coupling. (The
fact that ¢Z-theory with positive bare coupling presumably only allows for a trivial
continuum limit is besides the point here).

Of course, since there is no a priori notion of some finite, positive number
measuring the number of degrees of freedom of a QFT, there is no way we could
actually prove our conjecture. The best one can hope for, is a generalization {65] of
Zamolodchikov’s c¢-theorem [62] to the abovementioned larger space of QFTs.
Here we would just like to discuss some properties of ¢, which, we think, lend
support to our conjecture. First of all, if the UV limit of the QFT is a unitary CFT,
¢ reduces to the central charge ¢, which was already proposed [62] to measure the
number of degrees of freedom in this case. But ¢ has the right properties to do the
job even when the UV limit is a nonunitary CFT. From our final result for ¢, eq.
(67), we see that ¢ is manifestly positive. Furthermore, this equation allows us to
associate a “partial” finite-size scaling coefficient ¢, to each particle in the
Massive scattering theory, apparently measuring its contribution to the total
Number of massless degrees of freedom of the theory. Again, ¢, seems to have the
right properties to play this role: It is always between 0 and 1, 1 being the maximal
Number of degrees of freedom a massless particle (a boson) can have. In any given
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theory, ¢, is smaller the heavier the particle is, in almost all cases. Thig 1S Expe
intuitively, since one would think that a lighter particle has more massless de

of freedom than a heavier one - at least if the two particles are not too diffe

in other respects, e.g. in their interactions. Not surprisingly, the only particles
which this rule is violated are the fundamental particles in the D;P-related models:
which are indeed quite different from the other particles in these models. Finally
the fact that ¢, is proportional to the entropy of a one-dimensional gas of
massless particles (with the chemical potential determined by the S-matrix of the!
theory) is also quite suggestive. T

Up to now we considered eq. (67) that involves the S-matrix data of a massive
perturbation of a CFT. Although one would hope for a generalization of | his
formula to an arbitrary perturbation of a CFT, our results at present apply'only'_'.i
perturbations leading to purely elastic scattering theories. But we can also discuss
€ =c¢—12d, directly in terms of CFT data. One would like to show — at least’
modular-invariant;rational CFTs = that©—=12dis positive, and smaller than
value of ¢ of the free bosons and fermions used in a free-field representatiah )
[13, 14] of the given CFT. It would also be very nice if the trivial theory turns outto "
be the unique modular invariant, rational CFT with ¢ — 12d,, = 0. There are good *
reasons [65] to believe that ¢ — 12d,> 0 for all nontrivial rational CFTs on the =
torus. As an example, consider the Virasoro minimal models, where a complete &
classification of modular invariant partition functions exists [66] for both unil':' )
and nonunitary models. Then one can verify [66] that the spinless field whose left
and right dimensions equal the minimal weight in the Kac table always appears in
the model. Accordingly, for any modular invariant theory with labels p' and p, one;
has ¢ —12dy=1—6/pp’. As p' and p are mutually prime and both greater
1, we see that ¢ — 12d,, > 0, with an equality only for the trivial theory for which p
and p are 2 and 3. Note also that ¢ — 12d, <1, as expected from the abo
discussion, as all the Virasoro minimal models can be constructed [13] using
single free hoson.

We believe that a generalization of eq. (67) for & to an arbitrary factoriz
S-matrix theory could be an important tool in the study of integrable ma
two-dimensional quantum field theories. Furthermore, investigating the gen
properties of the finite-size scaling function &(r) and the finite-size scaling co
cient ¢ should provide new insights about the space of two-dimensional quan!
field theories. ]
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