
Form Factor Programme: Solutions to Exercises

1. Minimal form factor
This is a very simple exercise. To prove the first identity fab(θ) = Sab(θ)fab(−θ) holds
if
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Since sin2(i(a+ b)) = sin2(i(a− b))− sinh(2a) sinh(2b) we have that
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which proves the identity. Similarly, to prove that fab(θ) = fab(−θ + 2πi) we need to
show that
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which clearly also holds!

2. c-function in the Ising model
We have that

FΘ
0 := 〈0|Θ|0〉 = 2πm2 FΘ

2 (θ1, θ2) := −2πim2 sinh
θ1 − θ2

2
.

and the c-theorem tell us that there is a function c(r) defined as

c(r) =
3

2

∫ ∞
r

ds s3〈0|Θ(0)Θ(s)|0〉c.

The Ising model is a very simple theory (essentially a free Fermion) and the form factors
of all its local fields are known exactly (see question 4 also). Because the stress energy
tensor only has two non-vanishing form factors, this is a rare example in which the
form factor expansion of the two-point function is actually exact after including only
two-particle form factors (higher particle terms are all vanishing). Using the expansion
we saw in the lecture and considering the connected correlator

〈0|Θ(0)Θ(r)|0〉c = 〈0|Θ(0)Θ(r)|0〉 − 〈0|Θ|0〉2

we have that

〈0|Θ(0)Θ(r)|0〉c =
1

2(2π)2

∫ ∞
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dθ1

∫ ∞
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dθ2|FΘ
2 (θ1, θ2)|2e−rm(cosh θ1+cosh θ2)

=
m4

2

∫ ∞
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dθ1
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dθ2 sinh2
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2
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2 .
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c-functions of the Ising model

Figure 1: The blue curve is the TBA scaling function. The red curve is Zamolodchikov’s
c-function.

Changing variables to x = θ1 − θ2 and y = θ1 + θ2 we have

〈0|Θ(0)Θ(r)|0〉c =
m4

4

∫ ∞
−∞

dx

∫ ∞
−∞

dy sinh2 x

2
e−2rm cosh x

2
cosh y

2 .

and integrating in the variable y we have

〈0|Θ(0)Θ(r)|0〉c = m4

∫ ∞
−∞

dx sinh2 x

2
K0(2mr cosh

x

2
) = 2m4

∫ ∞
0

dx sinh2 x

2
K0(2mr cosh

x

2
)

= 4m4

∫ ∞
1

du
√
u2 − 1K0(2mru)

where we introduced the new variable u = cosh x
2
. Thus, the c-function is

c(r) = 6m4

∫ ∞
r

ds s3

∫ ∞
1

du
√
u2 − 1K0(2msu).

The integral is s can be performed exactly to:∫ ∞
r

ds s3K0(2msu) =
r2

(2mu)2
(2murK1(2mur) + 2K2(2mur)) .

Thus we obtain

c(r) =
3(mr)2

2

∫ ∞
1

du

u2

√
u2 − 1 (2murK1(2mur) + 2K2(2mur)) .

Note that c(r) is a function of mr (as in the TBA). That is why we call it a “scaling”
function. It is invariant under simultaneous scaling of the mass and the distance!

From this expression it is easy to extract the value c(0). We can expand the Bessel
functions about small mr:

2murK1(2mur) + 2K2(2mur) ∼ 1

(mur)2
+ constant,
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giving

c(0) =
3

2

∫ ∞
1

du

u4

√
u2 − 1 =

1

2
.

A plot of this function and the TBA scaling function for the Ising model in logarithmic
scale is presented in Fig. 1.

3. Cumulant expansion of two-point functions
The first part of the question involves comparing the form factor expansion of two point
functions with a similar expansion of the logarithm of the two-point function. We have
already see that if O is self-conjugate then we can expand the two-point function as

〈0|O(0)O(r)|0〉
〈0|O|0〉2

= 〈0|O|0〉−2

∞∑
k=0

∫ ∞
−∞

dθ1 . . . dθk
k!(2π)k

|FOk (θ1, . . . , θk)|2e−mr
∑k
j=1 cosh θj

The question states that this same ratio may be written as

〈0|O(0)O(r)|0〉
〈0|O|0〉2

= exp

[
∞∑
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∫ ∞
−∞
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k!(2π)k

hk(θ1, . . . , θk)e
−mr

∑k
j=1 cosh θj

]
.

So we just need to compare the two formulae term-by-term by collecting together terms
that have the same number of integrals (or the same mr-dependance). The exponential
above can be expanded in the usual way

exp

[
∞∑
k=1

∫ ∞
−∞

dθ1 . . . dθk
k!(2π)k

hk(θ1, . . . , θk)e
−mr
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]

= 1 +
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k=1

∫ ∞
−∞

dθ1 . . . dθk
k!(2π)k

hk(θ1, . . . , θk)e
−mr

∑k
j=1 cosh θj

+
1

2

[
∞∑
k=1

∫ ∞
−∞

dθ1 . . . dθk
k!(2π)k

hk(θ1, . . . , θk)e
−mr

∑k
j=1 cosh θj

]2

+ · · ·

= 1 +

∫ ∞
−∞

dθ1

2π
h1(θ1)e−rm cosh θ1 +

1

2

(∫ ∞
−∞

dθ1

2π
h1(θ1)e−rm cosh θ1

)2

+
1

3!

(∫ ∞
−∞

dθ1

2π
h1(θ1)e−rm cosh θ1

)3

+· · ·+
∫ ∞
−∞

∫ ∞
−∞

dθ1dθ2

2(2π)2
h2(θ1, θ2)e−rm(cosh θ1+cosh θ2)+· · ·

Comparing with the form factor expansion we have that

h1(θ) =
|FO1 (θ)|2

〈0|O|0〉2
,

h2(θ1, θ2) + h1(θ1)h1(θ2) =
|FO2 (θ1, θ2)|2

〈0|O|0〉2
,
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h3(θ1, θ2, θ3)+h1(θ1)h1(θ2)h1(θ3)+h1(θ1)h2(θ2, θ3)+h1(θ2)h2(θ1, θ3)+h1(θ3)h2(θ1, θ2) =
|FO3 (θ1, θ2, θ3)|2

〈0|O|0〉2
,

and so on.

Consider again the cumulant expansion:

log

(
〈0|O(0)O(r)|0〉
〈0|O|0〉2

)
=
∞∑
k=1

∫ ∞
−∞

dθ1 . . . dθk
k!(2π)k

hk(θ1, . . . , θk)e
−mr

∑k
j=1 cosh θj .

If the field O is spinless we know that all its form factors are functions of rapidity
differences. The same is true for the functions hk. Let us introduce new variables:

β1 = θ1, βi = θi − θ1 for i = 2, . . . , k.

Then
hk(θ1, θ2, . . . , θk) = hk(β1, β2 + β1, . . . , βk + β1) = hk(0, β2, . . . , βk)

The cumulant expansion can then be rewritten as

∞∑
k=1

∫ ∞
−∞

dβ1 . . . dβk
k!(2π)k

hk(0, β2, . . . , βk)e
−mr coshβ1−mr

∑k
j=2 cosh(βj+β1).

The variable β1 now only features in the exponential and so the integral can be carried
out. In fact

cosh β1 +
k∑
j=2

cosh(βj + β1) = cosh β1(1 +
k∑
j=2

cosh βj) + sinh β1

k∑
j=2

sinh βj.

So we need to carry out an integral of the form∫ ∞
−∞

e−a coshβ−b sinhβdβ = 2K0(
√
a2 − b2) for a > b.

The cumulant expansion can then be written as

log

(
〈0|O(0)O(r)|0〉
〈0|O|0〉2

)
= 2

∞∑
k=1

∫ ∞
−∞

dβ2 . . . dβk
k!(2π)k

hk(0, β2, . . . , βk)K0(mrd(β2, . . . , βk)).

with

d(β2, . . . , βk) =

√√√√(1 +
k∑
j=2

cosh βj)2 − (
k∑
j=2

sinh βj)2.

For small mr we may expand the Bessel function as

K0(x) ∼ − log x+ log 2− γE,
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where γE = 0.57721566 is the Euler-Mascheroni constant. The cumulant expansion is
then approximated by

log

(
〈0|O(0)O(r)|0〉
〈0|O|0〉2

)
≈ −2 log(mr)

∞∑
k=1

∫ ∞
−∞

dβ2 . . . dβk
k!(2π)k

hk(0, β2, . . . , βk)

−2
∞∑
k=1

∫ ∞
−∞

dβ2 . . . dβk
k!(2π)k

hk(0, β2, . . . , βk) (log(d(β2, . . . , βk))− log 2 + γE) + · · ·

Comparing with the expected short-distance behaviour

log

(
〈0|O(0)O(r)|0〉
〈0|O|0〉2

)
≈ −4∆O log r − 2 log〈O〉+ · · ·

we see that

∆O =
1

2

∞∑
k=1

∫ ∞
−∞

dβ2 . . . dβk
k!(2π)k

hk(0, β2, . . . , βk),

as expected. In addition we can even identify the constant correction as

log〈O〉 =
∞∑
k=1

∫ ∞
−∞

dβ2 . . . dβk
k!(2π)k

hk(0, β2, . . . , βk) (log(d(β2, . . . , βk))− log 2 + γE)

which means it is in principle possible to obtain the vacuum expectation value of an
operator from its form factors.

The first paper I know of where the cumulant expansion is used and the formula for
the dimension given is: F. Smirnov, Nucl. Phys. B 337 (1990) 156-180. The formula
for the vacuum expectation value appeared for the first time (as far as I know) in H.
Babujian, M. Karowski, Int. J. Mod. Phys. A 19 (2004) 34-49. Both the formulae for
∆O and for the vacuum expectation value have been used by many people, including
in some of our work.

4. This seems like a long problem but it is in fact very simple. Let us consider just one
case:

lim
λ→∞

F µ
2k(θ1 + λ, . . . θp + λ, θp+1, . . . θ2k) = lim

λ→∞
ik〈0|µ|0〉

[ ∏
1≤i<j≤p

tanh
θi − θj

2

]

×

[ ∏
p+1≤i<j≤2k

tanh
θi − θj

2

][
p∏
i=1

2k∏
j=p+1

tanh
θi + λ− θj

2

]

= ik〈0|µ|0〉

[ ∏
1≤i<j≤p

tanh
θi − θj

2

][ ∏
p+1≤i<j≤2k

tanh
θi − θj

2

]
All the tanh terms containing the λ shift tend to 1 so what remains is the product
of two form factors of either µ if p is even or of σ if p is odd. The same reasoning
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shows all other cases. The Ising model provides the simplest theory which possesses an
internal Z2 symmetry. This is behind the fact that clustering can mix the form factors
of two different fields. An argument to show the origin of the property of cluster
decomposition was given in G. Delfino, P. Simonetti and J. L. Cardy, Phys. Lett. B
387 (1996) 327 under the assumption of no internal symmetries.

5. ∆-sum rule in the Ising model
The Delta-sum rule states that:

∆µ = − 1

2〈0|µ|0〉

∫ ∞
0

ds s 〈Θ(0)µ(s)〉c

Once more because the stress-energy tensor only has two non-vanishing form factors,
the form factor expansion of the correlation function only contains one term and the
value of ∆µ should be obtained exactly. The calculation is quite similar as for Zamolod-
chikov”s c-function. We have that

〈0|Θ(0)µ(r)|0〉c = 〈0|Θ(0)µ(r)|0〉 − 〈0|Θ|0〉〈0|µ|0〉

we have that

〈0|Θ(0)µ(r)|0〉c =
1

2(2π)2

∫ ∞
−∞

dθ1

∫ ∞
−∞

dθ2F
Θ
2 (θ1, θ2)F µ

2 (θ1, θ2)∗e−rm(cosh θ1+cosh θ2)

= −m
2〈0|µ|0〉

4π

∫ ∞
−∞

dθ1

∫ ∞
−∞

dθ2 sinh

(
θ1 − θ2

2

)
tanh

(
θ1 − θ2

2

)
e−2rm cosh

θ1−θ2
2

cosh
θ1+θ2

2 .

Changing variables to x = θ1 − θ2 and y = θ1 + θ2 we have

〈0|Θ(0)µ(r)|0〉c = −m
2〈0|µ|0〉

8π

∫ ∞
−∞

dx

∫ ∞
−∞

dy
sinh2 x

2

cosh x
2

e−2rm cosh x
2

cosh y
2 .

and integrating in the variable y we have

〈0|Θ(0)µ(r)|0〉c = −m
2〈0|µ|0〉

2π

∫ ∞
−∞

dx
sinh2 x

2

cosh x
2

K0(2mr cosh
x

2
)

= −m
2〈0|µ|0〉
π

∫ ∞
0

dx
sinh2 x

2

cosh x
2

K0(2mr cosh
x

2
) = −2m2〈0|µ|0〉

π

∫ ∞
1

du

u

√
u2 − 1K0(2mru).

where we introduced the new variable u = cosh x
2
. The ∆-sum rule is:

∆µ =
m2

π

∫ ∞
0

ds s

∫ ∞
1

du

u

√
u2 − 1K0(2msu).

The integral in s is simply: ∫ ∞
0

ds sK0(2msu) =
1

(2mu)2
.

6



So,

∆µ =
1

4π

∫ ∞
1

du

u3

√
u2 − 1 =

1

16
.

This calculation was performed first in G. Delfino, P. Simonetti and J.L. Cardy, Phys.
Lett. B 387 (1996) 327 where the ∆-sum rule was originally proposed.

6. Form factors of the sinh-Gordon model
The kinematic residue equation is

lim
θ̄→θ

(θ̄ − θ)Fk+2(θ̄ + iπ, θ, θ1, . . . , θk) = i(1−
k∏
j=1

S(θ − θj))Fk(θ1, . . . , θk)

Employing the ansatz we have that

Fk+2(θ̄ + iπ, θ, θ1, . . . , θk) = Hk+2Qk+2(−x̄, x, x1, . . . , xk)

[ ∏
1≤i<j≤k

Fmin(θi − θj)
xi + xj

]

×

[
k∏
j=1

Fmin(θ − θj)Fmin(θ̄ + iπ − θj)
(x+ xj)(−x̄+ xj)

]
Fmin(iπ)

−x̄+ x

with x̄ = eθ̄ and x = eθ. The kinematic residue equation then becomes

lim
θ̄→θ

(θ̄ − θ)Hk+2Qk+2(−x̄, x, x1, . . . , xk)
Fmin(iπ)

−x̄+ x

k∏
j=1

Fmin(θ − θj)Fmin(θ̄ + iπ − θj)
(x+ xj)(−x̄+ xj)

= i(1−
k∏
j=1

S(θ − θj))HkQk(θ1, . . . , θk).

On the left hand side of the equation, the only pole comes from the term 1/(x − x̄).
We can easily compute

lim
θ̄→θ

θ̄ − θ
x− x̄

= −1

x
.

We can also rewrite the factor (1−
∏k

j=1 S(θ−θj)) in terms of the x-variables by using:

S(θ) =

(
x− i
x+ i

)2

for x = eθ,

so

S(θ − θi) =

(
x− ixi
x+ ixi

)2

.

Also we can use the information given to write

Fmin(θ − θj)Fmin(θ̄ + iπ − θj) =
x2 − x2

j

(x+ ixj)2
.
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This allows for various simplifications reducing the equation to

Fmin(iπ)(−1)kHk+2Qk+2(−x, x, x1, . . . , xk)

= −ix

(
k∏
j=1

(x+ ixj)
2 −

k∏
j=1

(x− ixj)2

)
HkQk(x1, . . . , xk)

The products above can be expressed in terms of elementary symmetric polynomials
by using

k∏
j=1

(x+ xj) =
k∑
j=0

xk−jσ
(k)
j ,

This means that

k∏
j=1

(x+ ixj)
2 −

k∏
j=1

(x− ixj)2 = (−1)k

[
k∑
j=0

k∑
p=0

((−ix)2k−j−p − (ix)2k−j−p)σ
(k)
j σ(k)

p

]

= (−1)k

[
k∑
j=0

k∑
p=0

x2k−j−p((−1)p+j2i sin(
π(2k − j − p)

2
))σ

(k)
j σ(k)

p

]

= 2i
k∑
j=0

k∑
p=0

x2k−j−p(−1)p+j+1 sin(
π(j + p)

2
)σ

(k)
j σ(k)

p .

Since

sin
π(j + p)

2
= sin

πj

2
cos

πp

2
+ cos

πj

2
sin

πp

2
for j, p ∈ Z.

We find that the sum above can be fully factorised as

= 4i

(
k∑
j=0

(−1)j+1xk−j sin
πj

2
σ

(k)
j

)(
k∑
p=0

(−1)pxk−p cos
πp

2
σ(k)
p

)
:= 4iDk(x, x1, . . . , xk).

Therefore we finally have

Fmin(iπ)(−1)kHk+2Qk+2(−x, x, x1, . . . , xk) = 4xDk(x, x1, . . . , xk)HkQk(x1, . . . , xk).

We may write these equations as

(−1)kQk(−x, x, x1, . . . , xk) = xDk(x, x1, . . . , xk),

and

Hk+2 =
4Hk

Fmin(iπ)
.

This result was first derived in A. Fring, G. Mussardo and P. Simonetti, Nucl. Phys.
B393 (1993) 413.
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