
Thermodynamic Bethe Ansatz: Solutions to Exercises

1. Derivation of the TBA equations
This derivation is not presented in any of the classic papers on TBA and it is a rather
nice calculation. Here I will consider the simplest case of a diagonal theory with a
single particle of mass m. You can easily generalise this to more complicated models.
Recall the equations:

ρ(θ) =
m

2π
cosh θ + ϕ ? ρ(r)(θ), (1)

and the formulae for the total energy and entropy:

h(ρ(r)) = m

∫ ∞
−∞

dθ ρ(r)(θ) cosh θ

s(ρ, ρ(r)) =

∫ ∞
−∞

dθ (∓ρ log ρ−ρ(r) log ρ(r)−(ρ±ρ(r)) log(ρ±ρ(r))) for Bosons/Fermions

Recall also the definition:

ρ(r)(θ)

ρ(θ)
=

1

eε(θ) ∓ 1
for Bosons/Fermions (2)

Thermodynamic equilibrium requires that the free energy f(ρ, ρ(r)) = h(ρ(r))−Ts(ρ, ρ(r))
is minimized, that is the functional derivative:

δf

δρ(r)
= 0.

Since all quantities involved depend on ρ and ρ(r) and these depend on each other, we
will need in particular to compute the functional derivative: δρ(θ)

δρ(r)(β)
. This can be com-

puted by differentiating equation (1) and employing the definition of the convolution:

δρ(θ)

δρ(r)(β)
=

1

2π

∫ ∞
−∞

dωϕ(θ − ω)
δρ(r)(ω)

δρ(r)(β)

Using δρ(r)(ω)

δρ(r)(β)
= δ(ω − β) we find

δρ(θ)

δρ(r)(β)
=

1

2π
ϕ(θ − β).

Taking the derivative of f(ρ, ρ(r)) we have

δf(ρ, ρ(r))

δρ(r)(β)
=
δh(ρ(r))

δρ(r)(β)
− T δs(ρ, ρ

(r))

δρ(r)(β)
= 0,

with
δh(ρ(r))

δρ(r)(β)
= m

∫ ∞
−∞

dθ
δρ(r)(θ)

δρ(r)(β)
cosh θ = m cosh β.
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and

δs(ρ, ρ(r))

δρ(r)(β)
=

∫ ∞
−∞

dθ
δ

δρ(r)(β)
(∓ρ log ρ− ρ(r) log ρ(r) ± (ρ± ρ(r)) log(ρ± ρ(r)))

=

∫ ∞
−∞

dθ

(
∓ δρ(θ)

δρ(r)(β)
(log ρ(θ) + 1)− δρ(r)(θ)

δρ(r)(β)
(log ρ(r)(θ) + 1)

±(
δρ(θ)

δρ(r)(β)
± δρ(r)(θ)

δρ(r)(β)
)(log(ρ(θ)± ρ(r)(θ)) + 1)

)
=

∫ ∞
−∞

dθ

(
∓ 1

2π
ϕ(θ − β)(log ρ(θ) + 1)− δ(θ − β)(log ρ(r)(θ) + 1)

±(
1

2π
ϕ(θ − β)± δ(θ − β))(log(ρ(θ)± ρ(r)(θ)) + 1)

)
= ∓(ϕ ∗ log ρ)(β)− log ρ(r)(β)± (ϕ ∗ log(ρ± ρ(r)))(β) + log(ρ(β)± ρ(r)(β))

= ±(ϕ ∗ log(1± ρ(r)

ρ
))(β) + log(

ρ(β)

ρ(r)(β)
± 1),

where the upper sign (+) correspond to Bosons and the lower sign (-) corresponds
to Fermions. Using the definition (2) (where (+) corresponds to Fermions and (-) to
Bosons) we have that:

1± ρ(r)(β)

ρ(β)
=

1

1± e−ε(β)
and

ρ(β)

ρ(r)(β)
± 1 = eε(β).

So
δs(ρ, ρ(r))

δρ(r)(β)
= ∓(ϕ ∗ log(1± e−ε(β))(β) + ε(β)

Recalling the definition:
L(θ) = ± log(1± e−ε(θ))

for Bosons/Fermions we have that

δs(ρ, ρ(r))

δρ(r)(β)
= (ϕ ∗ L)(β) + ε(β),

and the minimization of the energy is then equivalent to the condition:

0 =
δh(ρ(r))

δρ(r)(β)
− T δs(ρ, ρ

(r))

δρ(r)(β)

= m cosh β − T ((ϕ ∗ L)(β) + ε(β)).

Rearranging we obtain the TBA equation:

ε(β) =
m

T
cosh β − (ϕ ∗ L)(β).
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2. Scaling functions of free theories
For the free Fermion and the free Boson we have that ϕ = 0 and ε(θ) = mR cosh θ so
the L-functions are simply:

L(θ) = ± log(1± e−ε(θ)) = ± log(1± e−mR cosh θ)

and so the scaling function is

c(R) = ±3mR

π2

∫ ∞
−∞

dθ log(1± e−mR cosh θ) cosh θ.

Note that it is a function of mR. It is of course possible to evaluate this integral
numerically for different values of R. The result is (as expected):
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namely, the function tends to the values 1 and 1/2 asR→ 0 for the free Boson/Fermion,
respectively. This behaviour is easier to see when plotting the functions in a logarithmic
scale. It is possible to study the R → 0 analytically by expanding the logarithm in
powers of e−mR cosh θ. This gives the representations:

c(R) =
3mR

π2

∞∑
k=1

(∓1)k+1

k

∫ ∞
−∞

dθ e−mRk cosh θ cosh θ =
6mR

π2

∞∑
k=1

(∓1)k+1

k
K1(mRk).

whereK1(mRk) is a Bessel function. FormR� 1 we have thatK1(mRk) ≈ 1
mRk

+O(r)
and this immediately gives the UV limit:

c(0) =
6

π2

∞∑
k=1

(∓1)k+1

k2
=

{
1
2

for -

1 for +

A detailed analysis can be found in section 6 of the paper Klassen & Melzer, NPB350
(1991) 635–689.
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3. A programme for the TBA
I have written a very simple Mathematica code but of course you could do this in any
programming language. The code is very minimal and could be improved in many
ways. For instance the number of iterations is fixed to be 50 although as you can easily
observe if you make the code print for instance L(0), convergence tends to happens
after many fewer iterations (convergence is faster the larger R is). I am also taking
M = 250 points (that is, values of θ) in the range log(mR/2)−6 < θ < − log(mR/2)+6
(it can be argued that the L-functions are essentially zero outside this region). Here I
have added 6 to − log(mR/2) just to make sure I am looking at a large enough interval.
The programme will of course run faster if you set M to a smaller value.

Regarding the constant TBA equation, in this case it is simply:

ε+N log(1 + e−ε) = 0,

where

N = − 1

2π

∫ ∞
−∞

dθ
4
√

3 cosh θ

1 + 2 cosh 2θ
= −1.

Defining x = e−ε the equation becomes simply:

x =
1

1 + x
⇒ x =

−1±
√

5

2
.
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The only sensible solution is the one with the + sign (since x is the exponential of a real
quantity). This means the L-functions for R very small should develop a plateau at L =

log(1+
√
5

2
) ≈ 0.481212. It will look something like the first figure below. The figure on

the right shows the same function for low temperatures, where the plateau disappears.
The final figure shows the scaling function approaching the expected effective central
charge ceff = 2/5 = 0.4. Note that in this theory this is different from the central
charge which is negative.
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4. Constant TBA equations in minimal An Toda theory
The constant TBA equations take the form:

εa +
k−1∑
b=1

NabLb = 0 a = 1, . . . , k − 1.

Defining xa = 1 + e−εa the equations become:

k−1∏
b=1

(xb)
Nab = xa − 1,

and substituting Nab = δab − 2(K−1)ab we have

n∏
b=1

(xb)
−2(K−1)ab =

xa − 1

xa
.

or
n∏
b=1

(xb)
2(K−1)ab =

xa
xa − 1

.

In the context of the study of this kind of equations it is common to define new variables
Qa =

∏n
b=1(xb)

(K−1)ab so that xa =
∏n

b=1(Qa)
Kab and the constant TBA equations then

become

(Qa)
2

n∏
b=1

(Qa)
Kab −Q2

a =
n∏
b=1

(Qa)
Kab

These equations are easier to deal with because the Cartan matrix of all simply-laced
algebras has a simple structure. For An it is Kab = 2δab − δa,b+1 − δa+1,b. This is
sometimes written as K = 2 − I where I is the incidence matrix with entries Iab =
δa,b+1 + δa+1,b. So the equations for Qa become

Q2
aQ
−1
a+1Q

−1
a−1 − 1 = Q−1a+1Q

−1
a−1

and rearranging
Q2
a = 1 +Qa+1Qa−1. (3)

This type of equations are simplified versions of Baxter’s T −Q relations which occur
in the study of lattice models such as the RSOS models. Their solutions and algebraic
structure has been studied in great detail specially by A. Kuniba and collaborators
(see references in the web-page). One special feature of these equations is that their
solutions are in fact Weyl characters associated to the corresponding Lie algebra and
this holds for a wide range of integrable models whose S-matrix has an algebraic
structure. We can now check whether the given solutions actually work. We had that:

xa =
sin2(π(a+1)

n+3
)

sin πa
n+3

sin π(a+2)
n+3

.
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Since xa =
∏n

b=1(Qa)
Kab = Q2

a

Qa+1Qa−1
we have that the solution above need satisfy:

sin2(π(a+1)
n+3

)

sin πa
n+3

sin π(a+2)
n+3

− 1 = Q−1a+1Q
−1
a−1 =

sin2
(

π
n+3

)
sin πa

n+3
sin π(a+2)

n+3

,

but if this holds then

Q2
a =

sin2(π(a+1)
n+3

)

sin πa
n+3

sin π(a+2)
n+3

[
sin2

(
π
n+3

)
sin πa

n+3
sin π(a+2)

n+3

]−1
,

That is Qa =
sin

π(a+1)
n+3

sin π
n+3

. Substituting this into the equation (3) we find that indeed it is

satisfied.

According to the results we saw in the lecture, the central charge of the underlying
CFT (in this case this is a coset) should be obtained in terms of Roger’s dilogarithm
function as

c =
6

π2

n∑
a=1

L(1− x−1a ) =
6

π2

n∑
a=1

L(Q−2a ) =
6

π2

n∑
a=1

L

(
sin2 π

n+3

sin2 π(a+1)
n+3

)
.

This is hard to prove analytically but can be tested numerically case-by-case. For
instance for n = 1:

c =
6

π2
L
(

1

2

)
=

1

2
,

corresponding to the Ising model (A1-minimal Toda). For n = 2:

c =
12

π2
L

(
3−
√

5

2

)
=

4

5
.

and so on. The fact that we obtain always rational values is rather special as Roger’s
dilogarithm function returns complex values for most real inputs. Somehow the solu-
tions of the constant TBA just provide the sort of inputs of Roger’s dilogarithm that
make the function real and proportional to π2. This is yet another beautiful property
of the solutions to the constant TBA equations!
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5. Emergence of Roger’s dilogarithms from TBA equations
Consider once more the TBA equations for a diagonal theory with a single particle.
All the ideas are easy to generalise to more particles.

ε(θ) = mR cosh θ − (ϕ ∗ L)(θ).

Let us rewrite the term mR cosh θ as:

mR cosh θ =
mR

2
(eθ + e−θ) = eθ+log(mR/2) + e−θ+log(mR/2).

We are interested in the limit mR → 0, that is log(mR/2) → −∞. Suppose that we
shift θ → θ − x with x = log(mR/2) in the TBA equation. Then it becomes

ε(θ − x) = eθ + e−θ+2x − (ϕ ∗ L)(θ − x),

for x→ −∞ the term containing e2x becomes negligible compared to the rest. We can
also introduce “shifted” functions ε−(θ) := ε(θ− x) and L−(θ) = L(θ− x) and we end
up with:

ε−(θ) = eθ − (ϕ ∗ L−)(θ).

Later on we will also need to use the derivative w.r.t. θ of this equation which gives:

ε′−(θ) = eθ − (ϕ ∗ L′−)(θ).

Note that the last equation is obtained after integration by parts on the convolution
term. Let us now turn our attention to the scaling function

c(R) =
3mR

π2

∫ ∞
−∞

dθ L(θ) cosh θ =
3mR

π2

∫ ∞
0

dθ (L(θ)+L(−θ)) cosh θ =
6mR

π2

∫ ∞
0

dθ L(θ) cosh θ,

where the last identity holds for parity-symmetric theories. Let us perform a similar
shift:

c(R) =
6

π2

∫ ∞
0

dθ L(θ)(eθ+x + e−θ+x)

=
6

π2

∫ ∞
x

dθ L−(θ)(eθ + e−θ+2x) ≈ 6

π2

∫ ∞
x

dθ L−(θ)eθ,

We now replace eθ inside this integral by its expression eθ = ε′−(θ)− (ϕ ∗ L′−)(θ):

c(R) ≈ 3

π2

∫ ∞
x

dθ L−(θ)(ε′−(θ) + (ϕ ∗ L′−)(θ)).

The term ∫ ∞
x

dθ L−(θ)ε′−(θ) =

∫ ε−(∞)

ε−(x)

dε− L−(θ) =

∫ ε−(∞)

ε−(x)

dx log(1 + e−x).

The other term can be approximated as follows:∫ ∞
x

dθ L−(θ)(ϕ∗L′−)(θ) ≈
∫ ∞
−∞

dθ L−(θ)(ϕ∗L′−)(θ) =
1

2π

∫ ∞
−∞

dθ

∫ ∞
−∞

dβL−(θ)ϕ(θ−β)L′−(β)
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≈
∫ ∞
x

dθL′−(θ)(ϕ ∗ L−)(θ).

Here of course we used the fact that x→ −∞ so we can actually replace x by −∞ and
viceversa. We can now use the shifted TBA equations to get rid of the convolution as
eθ − ε−(θ) = (ϕ ∗ L−)(θ) so the integral becomes:∫ ∞

x

dθ L′−(θ)(ϕ ∗ L−)(θ) ≈
∫ ∞
x

dθL′−(θ)eθ −
∫ ∞
x

dθL′−(θ)ε−(θ).

We can now use the fact that

L′−(θ) = − e−ε−(θ)

1 + e−ε−(θ)
ε′−(θ)

to simplify the last integral

−
∫ ∞
x

dθL′−(θ)ε−(θ) =

∫ ε−(∞)

ε−(x)

dx
x

1 + ex
.

Also, the integral ∫ ∞
x

dθL′−(θ)eθ = −
∫ ∞
x

dθL−(θ)eθ,

after integration by parts and using that limθ→±∞ L−(θ)eθ = 0. Going back to our
original expression, we have shown that

c(R) =
6

π2

(∫ ε−(∞)

ε−(x)

dx log(1 + e−x)−
∫ ∞
x

dθL−(θ)eθ +

∫ ε−(∞)

ε−(x)

dx
x

1 + ex

)

That is

2c(R) =
6

π2

∫ ε−(∞)

ε−(x)

dx

(
log(1 + e−x) +

x

1 + ex

)
Defining the new variable y = (1+ex)−1 so that x = log(1−y)−log y, 1+e−x = (1−y)−1

and dx = − dy
y(1−y) this becomes

2c(R) ≈ 6

π2

∫ (1+eε−(∞))−1

(1+eε−(x))−1

dx

(
log(1− y)

y
+

log y

1− y

)
.

We have that ε−(x) = ε(0) and ε−(∞) = ε(∞) =∞, so (1 + eε−(∞))−1 = 0. This gives
the final expression:

lim
R→0

c(R) = − 3

π2

∫ (1+eε−(x))−1

0

dx

(
log(1− y)

y
+

log y

1− y

)
=

6

π2
L
(

1

1 + eε(0)

)
,

where ε(0) is the solution of the constant TBA equations.

9


