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1. Motivation

The scattering matrices of integrable quantum field theories
(IQFTs) can be constructed as solutions to a set of consis-
tency equation which almost entirely fix the S-matrix.

However, there are certain uncertainties, such as CDD fac-
tors. So, how do we make sure that we have the correct
S-matrix?

There is strong motivation to develop consistency checks for
integrable S-matrices: that is computational tools that al-
low us to extract information about the underlying CFT by
employing just the S-matrix and particle spectrum as input.

Both the TBA and the Form Factor Programme can be
thought of consistency checks, even though they are much
more than that.
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2. Bethe Ansatz Equations

Consider an IQFT with NA particles of species A and A =
1, . . . , N

Consider these particles to be far away from each other so
that interactions are weak and the system may be described
by the Bethe wave function Ψ(x1, . . . , xN ) depending only
on particle positions

Let the system be compactified onto a circle of length L

Then, the Bethe wave function must satisfy the following
periodicity condition:
Ψ(x1, . . . , xA = 0, . . . , xN ) = Ψ(x1, . . . , xA = L, . . . , xN )

In other words, the wave function should not change if a
particle takes a trip around the world...
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However, when it does so, it interacts will all other particles,
so periodicity of the wave function is equivalent to:

eiLMA sinh θA
∏
B 6=A

SAB(θA − θB) = 1, A = 1, . . . , N

W

W

S

S

L

C

A

B

AB

BAB

B

The logarithm of this equation (times −i) gives rise to the
famous Bethe ansatz equations:

Bethe Ansatz Equations

LMA sinh θA+
∑
B 6=A

δAB(θA−θB) = 2πnA, δAB(θ) = −i logSAB(θ)
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3. Roots and Holes

Much can be said about the solutions to these equations.
For each particle of type A there will be a set of allowed
values of nA = {n1

A, . . . n
NA
A } which are integers and possibly

repeating for Bosons and distinct for Fermions.

For each set of values there will be a corresponding set of

solutions to the equations θ
(i)
A with A = 1, . . . , N and i =

1, . . . , NA. Each such solution is called a root.

There are also sets of values n
(i)
A that may be skipped. The

solutions θ
(i)
A associated to “skipped” choices of n

(i)
A are called

holes.

In the thermodynamic or continuum limit the densities of
roots and holes will play an important role.
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4. Root/Hole Densities in the Thermodynamic Limit

Let NA, L → ∞ with NA/L finite. This is the thermody-
namic limit.

In this limit we may define root and hole densities:

ρ
(r)
A (θ) =

1

L

dn
(r)
A

dθ
= number of roots with rapidities in [θ, θ+dθ]

ρ
(h)
A (θ) =

1

L

dn
(h)
A

dθ
= number of holes with rapidities in [θ, θ+dθ]

The total density of states per unit length is:

ρA(θ) = ρ
(r)
A (θ) + ρ

(h)
A (θ) = 1

L
dnA
dθ
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5. Thermodynamic Limit of the BA Equations

In the thermodynamic limit the θ-derivative of the Bethe
ansatz equations become:

ρA(θ) =
MA

2π
cosh θ +

N∑
B=1

ϕAB ∗ ρ(r)
B (θ)

where ϕAB(θ) = dδAB
dθ and f ∗ g = 1

2π

∫∞
−∞ dβf(θ − β)g(β).

These equations are still hard to solve but they give us a
relationship between the state and root densities.

It is convenient to define the pseudo-energies εA(θ) as

ρ
(r)
A (θ)

ρA(θ)
=

1

eεA(θ) ± 1

for Fermions (+) and Bosons (-)
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6. Thermodynamic Equilibrium

The equations above can be manipulated to generate equa-
tions for the pseudo-energies εA(θ).

This is achieved by requiring thermodynamic equilibrium or
the minimization of the free energy per unit length.

For instance, the total energy of the system is

h(ρ(r)) =

N∑
A=1

MA

∫ ∞
−∞

dθ ρ
(r)
A (θ) cosh θ

And the total entropy:

s(ρ, ρ(r)) =
N∑
A=1

∫ ∞
−∞

dθ (∓ρA log ρA−ρ
(r)
A log ρ

(r)
A ±(ρA±ρ

(r)
A ) log(ρA±ρ

(r)
A ))

for Bosons and Fermions

The free energy is f(ρ, ρ(r)) = h(ρ(r))− Ts(ρ, ρ(r)).
Minimization means df

dρ(r)
= 0.
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7. Thermodynamic Bethe Ansatz Equations

The minimization constraint combined with the relationship

between ρA and ρ
(r)
A gives the TBA equations

Thermodynamic Bethe Ansatz Equations

εA(θ) =
MA

T
cosh θ −

∞∑
B=1

ϕAB ∗ LB(θ), A = 1, . . . , N

LA(θ) = ± log(1± e−εA(θ)) for Fermions (+) and Bosons (-).
They are coupled integro-differential equations for εA(θ).
Even for complicated theories, they can be easily solved nu-
merically through a recursive procedure.
For free theories ϕAB(θ) = 0 and εA(θ) = MA

T cosh θ are
simply the free “on-shell” energies.
The extremal free energy is simply

f(T ) = −
T

2π

N∑
A=1

MA

∫ ∞
−∞

dθ cosh θLA(θ)
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8. Relation to QFT on a Torus

Consider our QFT on a torus of circumferences L and R. We
may now quantize the system in two possible ways depending
on the choice of the time and space directions.

y

x

L

R

Taking L → ∞ as time direction and keeping R finite we
have a compactified system whose partition function is led by
the term e−E0(R)L where E0(R) is the ground state energy.

Exchanging the roles of time and space we have instead a
theory where time is periodic and space infinite. If we iden-
tify R = T−1 then we can think of this as a description of a
QFT at finite temperature.

The partition function is now dominated by the term e−RLf(R)

where f(R) is the free energy per unit length.
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9. Ground State Energy and Central Charge

It follows from the previous slide that

E0(R) = Rf(R) = − 1

2π

N∑
A=1

MA

∫ ∞
−∞

dθ cosh θLA(θ)

The limit R → 0 is the ultraviolet or high energy limit. In
this limit we expect to approach the underlying CFT and so
the ground state energy is related to the central charge in
the usual way:

lim
R→0

E0(R) = −πceff

6R
with ceff = c− 24∆

This provides a strong consistency check of the S-matrix.
For generic values of R we may define a scaling function:

TBA Scaling Function

c(R) =
3R

π2

N∑
A=1

MA

∫ ∞
−∞

dθ LA(θ) cosh θ.
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10. Features of the Scaling Function

The scaling function c(R) is one of the most studied objects
within the TBA approach. It admits various interpretations:
as an “off-critical” Casimir energy and as a measure of the
number of degrees of freedom which are excited at a partic-
ular energy scale 1/R.
For massive QFTs it is expected that limR→∞ c(R) = 0 and
limR→0 c(R) = ceff.
The function c(R) smoothly interpolates between these two
values and, at least for unitary theories, is monotonically
decreasing (from the UV to IR).
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11. Constant TBA Equations

Although the TBA equations can usually only be solved
numerically, the UV limit of these equations can be often
treated analytically and exactly.
The equations resulting in this limit are known as constant
TBA equations. They are coupled algebraic equations which
often encode beautiful algebraic structures.
Recall once more the TBA equations:

εA(θ) = MAR cosh θ −
∞∑

A=1

ϕAB ∗ LB(θ), A = 1, . . . , N

As R→ 0 the functions εA(θ) are constant for a wide range
of values of θ. The kernels ϕAB(θ) are generally strongly
picked around θ = 0. Let εA, LA be these constant values.
Then, the TBA equations become simply:

Constant TBA Equations

εA +

N∑
B=1

NABLB = 0 with NAB =
1

2π

∫ ∞
−∞

dθ ϕAB(θ)
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12. Algebraic Structures

The constant TBA equations can be exactly solved for known
NAB. For many theories, NAB encodes algebraic information
about the structure of the S-matrices.

For instance for minimal Toda field theory: NAB = δAB −
2K−1

AB where KAB is the Cartan matrix associated to a par-
ticular simply laced algebra.

Taking the infinite temperature limit of the TBA equations
and the formula for the scaling function, it is possible to
show:

Central Charge and Rogers Dilogarithm

ceff =
6

π2

N∑
A=1

L
(

1

1 + eεA

)
where L(x) = 1

2

∫ x
0 dy

(
ln y
y−1 −

log(1−y)
y

)
is Roger’s diloga-

rithm function.
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13. Y-Systems

Another way of writing the TBA-equations is to express
them in terms of the functions YA(θ) = e−εA(θ).

Let me illustrate this with a simple example: consider a
theory with a single particle and kernel ϕ(θ) = 2sechθ.

The TBA-equation is simply ξ(θ)+(ϕ∗L)(θ) = 0 for ξ(θ) =
ε(θ)−mR cosh θ. Let us Fourier-tranform this equation:

ξ̃(ω) + ϕ̃(ω)L̃(ω) = 0.

Where the “tildes” indicate Fourier-transformed functions.
In this case it is easy to show that ϕ̃(ω) = 1

π

∫∞
−∞ dθ

eiθω

cosh θ =

sechπω2 . So the equation becomes cosh πω
2 ξ̃(ω) + L̃(ω) = 0.

Take now the inverse Fourier transform of this equation. It
is possible to use the following property:∫ ∞
−∞

dωe−iθω cosh
πω

2
ξ̃(ω) =

1

2

(
ξ(θ − iπ

2
) + ξ(θ +

iπ

2
)

)
.
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14. Y-Systems: Example

So, in summary, the TBA equations have now been trans-
formed into

ξ(θ − iπ

2
) + ξ(θ +

iπ

2
) + 2L(θ) = 0.

Exponentiating both sides and using the definition Y (θ) =
e−ε(θ) we obtain

Sinh-Gordon Y-System

Y (θ − iπ

2
)Y (θ +

iπ

2
) = (1 + Y (θ))−2

This is a finite-difference equation which contains the same
information as the original integro-differential equation.

Note that the explicit dependence in mR has disappeared!
It is now “hidden” in the asymptotic properties of the Y (θ)
functions.
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