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THERMODYNAMIC BETHE ANSATZ IN RELATIVISTIC MODELS:
SCALING 3-STATE POTTS AND LEE-YANG MODELS
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Moscow, USSR
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Two integrable 2D relativistic field theory models are studied by the thermodynamic Bethe
ansatz method. One of them describes the scating limit T — T of the 3-state Potts mode! and
the other corresponds to the scaling region near the Lee—Yang singularity of the 2D Ising
model. The finite volume ground state energy of these two theories is calculated numerically
using the integral equations of the temperature Bethe ansatz approach. Numerical results are
compared with the perturbations near the corresponding conformal theories. This allows us to
relate the mass scales of the theories to their dimensional coupling constants.

1. Introduction

The critical point of the 3-state Potts model (for definition see e.g. ref. [1]) 1s

described by the minimal model #(5/6) of conformal field theory (CFT) [2, 31

This conformal model corresponds to the Virasoro central charge

c=4/5 (1.1)

and the following table of primary field dimensions

3 138 2/3  1/8 0
7/5 21740 1715 1740 2/5 (18}
2/5 1740 1715 21740 7/5° S
0 1/8 2/3 13/8 3

The scalar field @ = @, ;, with dimensions (2/5,2/5) is relevant and corresponds
to the temperature deformation of the critical theory [3]. This means that the
perturbation of the critical fixed point action results in a field theory that describes
the scaling limit 7 — T, of the Potts model. It seems natural to denote this field
theory as [.#(5/6))a.1), where the content of the square brackets refers to the
short-distance CFT and the index indicates the relevant scalar perturbation. To

0550-3213 /90 /$03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)
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in this paper we shall call this theory the

avoid this somewhat overequipped symbol
lly SPM may be defined through the

scaling Potts model (SPM). Conventiona
action P

\ A::PM=A.J(5gn;+/\fd’(l')d21- \ (1.3)

'2.!5

The coupling constant A here has dimension A ~ (mass)"'”=u_.k A-B)

It was shown in ref. [4] that SPM is an integrable field theory, i.e. il possesses an
infinite series of commuting integrals of motion. SPM develops a finite correlation
length R, and therefore its spectrum is massive. In a theory with massive
excitations the integrability implies the factorization of their scattering (sce e.g. ref.
[5]). The structure of integrals of motion discovered in ref. [4] strongly supports the
following scattering theory, suggested earlier in [6). The particle spectrum consists
of a Z, doublet of massive particles A,E of the same mass m,. The antiparticle A
can be viewed as a bound state of two particles A (since it Shows up as a pole in
the corresponding scattering amplitude) and vice versa. All the scattering ampli-
tudes are expressed in terms of two-particle amplitudes R = AN

e ——

\A(ﬁl)A(B2)>1n = SAA(BI - BZ) \A(Bl)A(BZ)>0ul ?
\A(Bl)K(B2)>in = SAK(BL - Bz)'A(Bl)K(Bz)%m ’ (1-4)

lliding particles. Note the absence Of

where B, and B, are rapidities of co
reflection in AA scattering. The factorized scattering theory without reflection i
ply products of

called purely elastic. Multiparticle amplitudes in this case are sim
pairwise transition ones [4, 6]

sinh(B/2 +im/3) sinh(B/2 +im/6)
_ ()= 5
Sar(B) = Gnn(p/2—in/3) S_AA( B) = Ginn(B/2—im/6) Gy

The scattering theory described contains all the on-mass-shell information about
SPM. It seems interesting to study this relativistic field theory off-mass-shell, in
particular to make a connection between the mass-shell region and the ultraviolet
(UV) limit governed by the CET .#(5/6). In this paper the finite size effects
in SPM are considered by means of the Wa Bethe ansafz (TBA)

method [7-12].

The relativistic version of this approach gives information about the ground staté
‘energy of the relativistic integrable field theory placed in a box of finite length R
with periodic boundary conditions, i.e. on a circle. The ground state energy E(R)is
a function of the circle circumference R. From dimensional arguments it is clear
that RE(R) is a function of the scaling length r=R/R.. We define the ground
state scaling function F(r) as E(R)=2mwF(R/R)/R. Off-mass-shell effects be-
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come important if R is comparable or less than the correlation length R, ~1/m,
where m is the mass scale of the theory. In the following considerations we shall
always specify this quantity as the inverse mass m, of the lightest particle in the
theory. Thus the scaling length is r =myR and

2
E(R)z—R—F(mOR). (1.6)

The limit R — 0 corresponds to the UV limit and is described by CFT. In
particular E(R) behaves as E(R) ~mc/6R in this limit [13], where ¢ is the CFT
central charge.

From the space-time point of view this finite box theory lives on an infinite
cylinder based on a circle of circumference R. In euclidean relativistic field theory
one can alternatively treat this geometry as the theory in an infinite space volume
but at finite temperature 1/R. The infinite volume thermodynamic effects can be
treated completely in terms of on-mass-shell data. In the case of factorized
scattering theory the finite-temperature states are described by the Bethe wave
function. This permits one to reduce the problem to a system of nonlinear integral
equations (the TBA equations), the content of the scattering theory being encoded
in their form. Equations of this type were first considered by Yang and Yang [7]
and successfully used later in thermodynamics of integrable lattice systems [8-12].

In sect. 3 the TBA equations are specified for the case of scattering theory of
SPM. It turns out that in the charge symmetric case these equations are exactly the
same as the TBA equations, corresponding to the S-matrix of the field theory
describing the scaling region near the Lee—Yang singularity of the 2D Ising model
[14,15].

Critical behavior in the Lee—Yang singularity is described by the minimal model
.#(2./5) [16]. This model is nonunitary and corresponds to the central charge

C =1 P"G‘E*\\‘ c=—22/5. (1.7)

The table of primary field dimensions
0o -1/5 -1/5 0 (1.8)

contains only two primary fields: the unity operator / and the scalar field ¢ with
dimensions (—1/5, —1/5). According to the conventions suggested above the
field theory corresponding to perturbation of the conformal theory by operator ¢
is denoted as [.#(, 5))1,2) 01 [-#5 5)1,3)- In the present case this general notation is
redundant because ¢ is the unique relevant perturbation of .#(2/5). We shall call
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this field theory the scaling Lee~Yang model (SLYM). The corresponding conven-
tional action is

ASLYMZA/(2/5)+gf‘P(x)d2x’ (1.9

where the coupling constant g has dimension g ~ (mass)'>>.

In ref. [17] it was shown that this field theory is integrable and its particle
spectrum consists of a single massive particle B with mass mpy. The two-particle
amplitude exhibits a pole corresponding to fusion BB — B — BB and has the form

sinh(B) +isin(w/3)
sinh(B) —isin(w/3)

Sge(B) = (1.10)

The scattering theory is nonunitary and the pole has the wrong residue.

In sect. 2 we present briefly the TBA method for relativistic systems in the
simplest case of purely elastic scattering. In sect. 3 the TBA equations are
specified for the scattering theories of SPM and SLYM. In the charge symmetric
case this leads to the same single integral equation. This equation is studied in the
low- and high-temperature limits. In particular, the nonperturbative bulk vacuum
energy is extracted exactly from this equation. In sect. 4 the equation is investi-
gated numerically. The ground state scaling function is calculated with high
accuracy. Also we estimate several coefficients in its high-temperature perturbative
expansion. In sect. 5 these coefficients are compared with perturbations of SPM
and SLYM in coupling constants A and g, respectively. This provides us with the
numerical relation between the dimensional coupling constants and mass scales in
these two theories. With the conventional CFT normalization of fields in (1.3) and
(1.9) we obtain

m, = (4.504307863...)A°/°,

mg = (2.642944662...)(—ig)™"%. (1.11)

2. TBA for relativistic purely elastic .S-matrix

We start by considering a relativistic field theory in toroidal geometry, having
mind to pass to a cylinder as a limiting case of the torus. We take a flat torus
generated by two orthogonal geodesic circles C and B of circumference R and L,
respectively (fig. 1) and follow a cartesian coordinate system with the x-axis along
the contour C and the y-direction parallel to B. There are two topologically
different ways to develop the hamiltonian approach to this situation. On the oné

e
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Fig. 1. Flat torus generated by two orthogonal geodesic circles C and B of circumference R and L,
respectively.

hand one can consider the field theory states on circle C. Denote the correspond-
ing space of states as #. The y axis plays the role of time direction and states are
evolved by the hamiltonian

1
- p© _
He=P{® = fCTyydx, (2.1)
where 7, is the stress tensor of the theory. The momentum

1
Po=P© = E;[T dx (2.2)

Xy

is quantized and its eigenvalues are 27n/R with n integer. Alternatively, the
contour B can be chosen as a quantization surface and the evolution of the
corresponding space of states & in the —x direction (we take —x as the time
direction to save the frame orientation) is described by hamiltonian

Hy = —P<‘”=“1 fT dy (2.3)
B X Ve C xx :
The space momentum
P =P<B>=—-1—/T dy (2.4)
BTy 2 '

has eigenvalues 27n /L, n € Z in space #.

In the following we consider the limit L — w, L > R. In this limit the partition
function of the field theory Z(R, L) is dominated by the ground state of H. with
the ground state energy £(R)

Z(R,L) ~e EROL, (2.5)
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On the other hand
Z(R,L) = tr[e~RHs] . (2.6)
@
In the thermodynamic limit L — o one has

log Z(R, L) ~ ~LRF(R) = =L - EIR) (2.7)

where f(R) is the bulk free energy of the system on B at temperature 1/R. This
gives the relation

E(R) =Rf(R). (2.8)

Due to the translational invariance of the torus the one-point functions are
coordinate independent. In particular

: . E(R) dE(R)
7 D=, (Ly=2r—— (2.9)
and the trace of the stress tensor is
d
(T =(T+T,)=27——[RE(R)]. (2.10)

RdR
ba v LLg)
In the space parity invariant theory with nondegenerate ground state we also have

(T, —0. (2.11)

Consider now more closely the structure of the space & in a theory with
factorized purely elastic scattering. The TBA equations arise in the limit [ > IR
where the off-mass-shell effects can be neglected. To avoid irrelevant complica-
tions we consider first the simplest scattering theory with a single neutral particle

of mass m and a pair scattering amplitude S(B, — B,). The rapidities B, and B, of
particles parameterize their on-shell energies and momenta

e(B)=mcoshB,, p.(B) =msinh g, . (2.12)

Amplitude S(B) satisfies unitarity

S(B)S(-B) =1 (2.13)

and crossing symmeltry

S(B) =S(im-B).

(2.14)
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1s the one-point functions are
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The Bethe wave function. In relativistic theory the wave function formalism is
inappropriate to describe a system of relativistic particles (this is due to virtual and
real particle creation). In the configuration space, however, there are regions
where we have a set of relativistic particles strongly separated in their space
positions x;. More specifically we take |x; —x;| > R.. With a short range interac-
tion, in these regions the particles move as free ones and off-mass-shell effects can
be neglected. In these regions, which we call free regions, we can talk about the
space coordinates x; and momenta p, of particles and introduce the wave function
Vxy,. ..o Xn)-

In the factorized picture the number of particles N is the same in all the free
regions. The set of their momenta p;, i=1,2,..., N, is also the same and the wave
function is the Bethe wave function. We denote a free region as {iyyigy .- ind if
X, <X, < ... <Xy

The transition between two adjacent free regions passes through configurations
where two or more particles are close to each other. In these configurations, of
course, the relativistic effects are essential and we cannot use the wave function.
The scattering theory, however, provides conditions to match wave functions in
adjacent free regions. In the purely elastic case every transition, say {7,,.... i,
ipstreesing >{iyyeippryips -, in), results in multiplication of the wave func-
tion by the corresponding scattering amplitude, S(B, — Biw) in this case. Note
that for B real this amplitude is an unimodular number

smmarm——

.§(B) =P (2.15)

with real phase 8(3).
These matching conditions lead in particular to the quantization equations for
the momenta p,, i =1,2,..., N, of N particles in a periodic box of length L > R,

ePtT1S(8,-8;) =13 i=1....N (2.16)
J#i
or !
mLsinh B, + ), 8(B; — B;) =27n, (2.17)
j#Ei

with N integer numbers n,. This system of transcendental equations selects
admissible sets of rapidities (8,, ..., By) in free regions {i,...,iy}. The energy and
momentum of the state (B,,..., By) are

N N
Hy= Y. mcoshB;,  Pg= ) msinhp,. (2.18)

i=1 A =1

Ay
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From eqs. (2.17) and (2.13) it is readily seen that 27w PgL is an integer number, ag
it should be in a periodic box. “ =

Additional selection rules on rapidity sets (B,,...,8,) are to be taken into
account if the particles are identical. The Bethe wave function should be sym-
metrized or antisymmetrized depending on their statistics. The unitarity condition
(2.13) specifies that §%(0) = 1. Two different cases are possible:

(a) S(0)=—1. (2.19)

If there are two identical particles with the same rapidities, the wave function is
antisymmetric in their coordinates. This is incompatible with Bose statistics.
Therefore in the bosonic case such states should be excluded. In this sense bosons
behave like fermions: each value of rapidity can be occupied by at most one
particle. It implies in particular that all the integers n; in (2.17) are different. We
shall denote this situation in the Bethe ansatz equations as “fermioni¢”. On the
other hand, if identical particles are fermions, the states with coinciding rapidities
are allowed and fermions can occupy each rapidity value in any number. This case
will be referred to as *“bosonic™.

(b) S(0)=1. (2.20)

In this case the situation is inverted. Bose particles occupy each rapidity value in
any number and fermions behave like fermions.

Eq. (2.17) is a complicated system of transcendental equations. The situation
yields to analyses in the thermodynamic limit L — . The number of particles in
thermodynamic states grows ~ L and as L — o becomes very large. The spectrum
of rapidities, determined by eq. (2.17), condenses and the distance between
adjacent levels behaves as B, —B,.,~1/mL. It makes sense in this limit to
introduce a continuous rapidity density of particles p,(8). Taking a small rapidity
interval AB with n particles inside, one defines

pi(B) =n/AB. (2.21)

This smooth function of B is independent of a choice of interval Ag while
1/mL < AB < 1. The phase sum in eq. (2.17) is nearly constant when varying
from one B, to the next B,,, and can be estimated as an integral. Eq. (2.17)
acquires the form

mLsinh B+ [8(8;— B\ B) dB' = 2mn;

and can be considered as the equation for rapidity levels, defined as solutions 10
this equation for all integer numbers 7 on the r.h.s. but not only », corresponding
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to actual state. The situation is analogous to that for a system of free particles,
where the set of allowed levels is determined by the one-particle quantization
condition and one talks about occupied and free levels. The only difference from
the free case is that now the set of levels is organized self-consistently with the
particle distribution. Introducing the level density p(B) we arrive at the integral
equation ==

2mp(B) =mL cosh B + [@(B—B)p(B)dB', (2.22)

where

o(B) =05(B)/0B. (2.23)

The energy (2.18) of the system now reads
HB=fmcosth1(B)dB. (2.24)

It should be realized that in the thermodynamic limit a large number of
quantum states correspond to every consistent pair of densities p and p,. Consider
a partition of the rapidity axis in small intervals AB, < 1. If also 48, > 1/mlL,
there is a large number N, ~p(B,)AB, of levels (note that p,p, ~L) in each
interval and about n, ~p(B,) AB, particles are distributed between them. The
averaged densities are not sensitive to local redistributions of particles among
levels. The number of different distributions in the interval AB, amounts (o

(N)! nualo | nasdel
()N, —n)! (2.25)

in the “fermionic” case and

(N, +n,— 1) yf WS

in the “bosonic” case. The limiting behavior as [, — « of the number of states
A (p, p,), corresponding to given consistent densities p and p, is estimated by the
entropy ~(p, p,) = log #(p, p,). While 1/mL < AB, < 1 the number A p,p)
is correctly estimated as the product of numbers (2.25) or (2.26) over intervals 4B,
and the entropy is

g = fdﬂ[p log p — p,log py — (p —p)log(p = p1)] (2.27)

(2.26) -

g
i
1
1
i
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in the “fermionic” case and
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Fose = [ ABL(p +p1)log(p +p1) —plogp =P log p1] (2.28)

in the “bosonic” one.
With the entropy taken into account the summation over states in (2.6) reduces

to minimization of the free energy

_RLf(p,p,) = —RHg(p,) +-7(p,p1) (2:29)

in the macroscopic characteristics p and p,, constrained by the dynamical relation
(2.22). 1t is convenient to introduce «“pseudoenergy” e(B) as

P e’ - p1 .

—= = Y= (fermionic case) , (2.30a)
p 1+te PP

p e’ P .

— = — et = — (bosonic case) . (2.300)
p 1-e pt+p

In this notation the extremum condition takes the form

d r
—Rmcosh B +&(B) + /(p(ﬁ — B)log(1+e**Y) ~2—'[:? =0 (fermionic case),
(2.31a)

d !
— Rmcosh B +&(B) — f(p(ﬁ — B")log(1 —e™=#) —2_31; =0 (bosonic case) -
(2.31b)

It turns out that densities .p and p, enter the expression for the extremal free

energy f in the ratio p;/p only for

d
Rf(R) = ?mf cosh B log(1 + e’E(B))—z—i— , (2.32)

where the upper sign refers to the fermionic case and the lower sign to the bosonic

case. .
In the more general case there are several types of particles A,, a = 1,2,...M
with masses m,. The purely elastic scattering theory is described by a symmetric
M X M matrix of pair transition amplitudes S,.,(B), each satisfying the unitarity
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condition (2.13) (if there are charged particles, the crossing symmetry relations
may have a slightly more complicated form than eq. (2.24)). In the TBA approach
one considers M level densities p(B) and M particle densities p{”. Eq. (2.22)
turns into a system of integral equations

(@) _ m

L
cosh B+ @g * p1”, (2.33)
a

p

where ¢,, is the symmetric matrix kernel

4
%h(ﬁ) = “i£bgsab(ﬂ) (2-34)
and * in (2.33) denotes the convolution
dg’
oxpi=[e(B=B)p(B) 5~ (235)
T

The extremum equation (2.31) becomes a system of nonlinear integral equations
for M pseudo-energies ¢,(8)

ef‘ga(B)

p{(B) = mp‘“’(ﬁ), (2.36)

where the upper sign in the denominator is chosen for particles A, of “fermionic”
type (this depends both of their statistics and the sign of the amplitude S,.(0) and
the lower sign refers to particles of “bosonic” type. Introducing quantities

L,(B) = +log(l+e ), (2.37)

where again the upper and lower signs correspond to particles of fermionic and
bosonic types respectively, we can write down the TBA equations in unified form

M o
—m,RcoshfB +¢,+ Y @ Ly=0. (2.38)

b=1

The bulk free energy f, and therefore the ground state energy in space ¢, are
given by the formula

M dB
E(R)=Rf(R)=- ¥ mafLa(B) cosh B~ (2.39)

a=1
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Note that comparison of egs. (2.33) and (2.39) leads to the useful relation

L ds,(B)

P! B) = 77 R

(2.40)

The TBA expressions for the stress tensor expectation values have the form

27 M
(Te)=—1 L m, [p{”(B)cosh pdp (241)

a=1

and

(T:) = Z m, T cos sinh B dg. (2.42)

M e (e(B) 1 de(B)
z ( R "R B

Introducing the solutions ¢ and s’ of the linear integral equations

M e—fn
PO =m ettt T gur—— (243)
= a@ . uk -l i_ e th +
we get expression (2.42) in the form
1 M e“'-au-’)
(Tey=3 L megomogm VOB +U(B)ef)dp.  (244)

These formulas are useful in the high-temperature limit of TBA equations.

3. TBA for SPM and SLYM scattering theories

Consider first the SPM scattering theory with the doublet of charged bosons A
and A. We introduce the corresponding pseudoenergies &, and ez. The matrix
kernel in the integral (2.38) in this case has the following entries

Ve
ean(B) =ear(P) = = 50 G a1
3
exx(B) = nxl(B) = = oo - &0

Note that

d 2
f‘P.mK(ﬁ)'z—i=3» (3:2)

]

- T T
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to the useful relation

(2.40)

»n values have the form

sh BdB (2.41)

dea(B) . ol
P sinh g|dB. (2.42)

1
R
- integral equations

-&p

b
per A (2.43)

By @(B)ef)dp.  (2.44)
limit of TBA equations.

riry *heories

e doublet of charged bosons A V

lergies &, and ex. The matrix
lowing entries

V3
hp+1’
3
el (3.1)
hp-—-1
dg 2 .
B) py = 3 (3-2)
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For the scattering theory under consideration the Bethe ansatz is of the

fermionic type and TBA equations read as

—myRcosh B +es+@an* Lat @ar* Lz =0,

—mARCOShB‘*‘E/-\’*‘(PKA*LA-F(pK/‘\*L7\=0 (33)
where
L, =log(1+e™"); Ly =log(1+e™%). (3.4)
The ground state energy is
dp
E(R) = —mAfcoshB(LAJrLK)——. (3.5)
21

Here we shall consider only the charge symmetric thermodynamic state and set

e (B) = ex(B). It makes sense however to study thermodynamic states with the

charge symmetry broken by, say, insertion of a charge asymmetric operator,

commuting with Hy into the trace in eq. (2.6). An example is the Z, charge {2
QA = e27/3A, QA = ¢~ 2™/A. From the point of view of the theory quantized on
C this corresponds to the study of the ground state in sectors with nonperiodic
(twisted) boundary conditions. At present we are not concerned with this interest-
ing problem.

In the charge symmetric case the two equations
left with the single integral equation for one pseudoenergy & =& = €x

(3.3) are the same and we are

—RmAcoshB+a+qp*10g(l+e“*")=0 (3.6)
where
2y3 sinh(2p)
= s = ——— - 3.7
@ =@Pan T PAA sinh(38) (3.7)

equation for the SLYM scattering

Eq. (3.6) has exactly the same form as the TBA
n can be readily traced to the fact

theory with pair amplitude (1.10). This observatio

that

SBB(B) =SAA(B)SAZ\’(B) . (3~8)

It follows that the ground state scaling functions (1.6) in these two field theories
hich is due to two species of particles

are the same except for factor of 2 w
contributing to (3.5)
(3.9)

Fspm(r) =2Fgym(r) =2F(r),
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where the scaling length r=m,R in SPM and r = mgR in SLYM. By definition

=7 dg
F(I') = E/COShﬂL(B)E
L(B) =log(1+e™*®) (3.10)
where () is the solution to the integral equation

—rcoshB+e+oxL=0. (3.11)

Before turning to a numerical study of eq. (3.11) consider a few limiting cases. .

Iterations of eq. (3.11) produce the asymptotic low-temperature expansion
r
F(r)=5;(Cl(r)+C2(r)+...), (3.12)

where C (r) ~ exp(—nr) as r — « up to a power-like factor. Separate terms C,(r)
correspond to n-particle clusters in the trace (2.6). We have

=1l
Cy(r)= E;[coshﬂe‘“’“hﬁdﬁ,

a5, dp,

277 277 eAr(cosh Bl+C°5hﬁz)¢(ﬁl _BZ) 3

1
Cy(r) = -A;fcosh Be_z’“’s'_‘ﬁdﬂ—f

(3.13)
These integrals can be expressed in terms of modified Bessel functions

1
C(r) = _;Kl(r):

1 V3 o =
C,(r) = 2—77—_K1(2r) + P[K‘(r)f, Io(t)Kg(t)thIl(r)fr Kg(t)tdt]

. Ej? [Kl(\/§ ) [ LK de+ 1(/57) [TKo(450) Kg(t)tdt].

(3.14)

A 7 B BT ) e Ty ARt e ey

- e T

T e ———
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1R in SLYM. By definition

1B

2ar

(3.10)

I (3.11)

:onsider a few limiting cases.
mperature expansion

) (3.12)

factor. Separate terms C,(r)
/e have

-r(c ;l+COShﬁZ)(vD(Bl . ﬁz) .

(3.13)

.d Bessel functions

[+ Il(r)meS’(t)ldt}

\/,§r)fwK0(\/§t)K§(t)tdt].

(3.14)
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For any r and for large |B| the solution e(B) to eq. (3.11) follows asymptotically
the “free” energy r cosh 3. Corrections are given by the following B — % asymp-
totic expansion
5B

o(B) - bref = —23 ((2m/r)si(r)e™? = 2m/r)ss(r)e”

+(2m/r) s,(r)e” " = m/r) sy (r)e "+ ),

(3.15)
where
V3r?
s (r) =F(r) = 5—>
d
(27/r)"sn(r)=—fL([5)e"-B C on=5,7,11,13,.... (3.16)
21

Note that exponents in the r.h.s. of expansion (3.15) are exactly the numbers of
integrals of motion in SLYM [17] and neutral integrals of motion in SPM [4].
Functions s,(r) in (3.16) are chosen as to have a finite limit as r — 0.

In the high-temperature limit r =0 the solution s(pB) flattens in the central
region —log(2/r) < p < log(2,/r), tending to the limiting value there

*—n0 e —wbe
V5 +1 Y
g, =log 5

] =0.4812118251... . (3.17)
Therefore L(B) looks like a plateau in the central region with the same limiting
height £, and double exponential falloff outside this region (see fig. 2, where some
numerical examples are plotted). As r — 0 the plateau widens and the form of its
right and left edges tends to some universal pattern. The r-dependence of the
function L(B) reduces to shifts of the edges. The limiting form of, say, the right

N
L(p)

-0.5

Fig. 2. Few patterns of L(f) for different values of 7.
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edge is determined by the solution L, (8) = log(1 + e =) of the equation

—ef et o L, =0 (3.18)

shifted to the right in B by log(2/r). We call the r-independent function L,; ()
the kink solution as it interpolates between limiting values &, and 0.

In particular, the kink solution governs the r — 0 asymptotics of the ground state
scaling function F(r)

1
F(0) = = 5= [Lun(B)eP dp. (3.19)

A known [8-10], but somewhat mysterious fact is that this integral can be

calculated explicitly in terms of the Rogers dilogarithm function. Differentiating
(3.18) w.r.t. B one substitutes for e? in (3.19)

R (.20)
This gives ‘
1 © e ¢
2F(0) = — 272[ de| ;—— +log(1+e™") (3.21)
and
F(0) = —1/30. (3.22)

This value matches well with the ground state energy asymptotics predicted by
conformal invariance. In the UV limit one has [13] '

E(R)Q%T(A “T*liz)’ (3.23)

where A and A are right and left dimensions of the ground state. In SPM the
ground state corresponds to the vacuum state of A#(5/6) with A =A =0 and

Ego ~ —27/15R . (3.24)

This corresponds precisely to (3.22). In SLYM it is the negative dimension state ¢
of #(2/5) with A=A = —1/5 that plays the role of the ground state. Therefore

Egiyy~ —m/15R, (3.25)

again in accordance with (3.22).
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t e —2unP)) of the equation

0 _ (3.18)
ndependent function Li.(B)

values g, and 0.
symptotics of the ground state

'd (3.19)

is that this integral can be
ithm function. Differentiating

aEkink
a8 . (3.20)
og(l+e™°) (3.21)
(3.22)

ergy asymptotics predicted by

5 ) (3.23)

the ground state. In SPM the
(5/6) with 4 = A =0 and

(3.24)

the negative dimension state ¢
of the ground state. Therefore

(3.25)
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Turn now to next-to-leading high-temperature corrections. To get rid of the
dominant “conformal” contribution (3.22) to the scaling function it is convenient
to consider the stress tensor trace expectation value (2.42), which is zero in the

conformal limit. Using eq. (2.42) we have

. iy, ! (2m)* dF(r) g 8P s
maXTHysvm = 1maXTi0sem =~ 74, ~ fml/u(ﬁ)e dg.
(3.26)
where ¢, (B) is the solution to the linear equation
e ¢
=Pt v, (3.27)

1+e”°

In the limit » — O the integrand in eq. (3.26) is localized near the right edge of the
central region. Its shape there is determined by the kink function Li(B) 1t

follows that the limiting value is

Ty =

2m)* dF(r dL (B

o) dF) | B 5y -
r dr | _, dp

Note that this is just the quantity that governs the B — —o asymptotics of the

A TN

convolution

V3
@ * L= —€0+ ——Toe? + ... (3.29)
o

On the other hand, one can argue that £ (B) at £ =0 is a regular function of

t = exp(6B/5). The cancellation of e? terms in eq. (3.18) therefore requires
To=1/V3 . (3.30)
The number determines the next-to-leading term in the scaling function

V3r?

24

F(r)=—%+ T (3.31)

It seems true that the remainder part of F(r) near G =0 is a regular function of
G =r12/5

ng—ﬁ}=~L+iFG" (3.32)

24 ‘ il
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with a finite radius of convergence. We shall see in sect. 5 that the series on the
r.h.s. of eq. (3.32) corresponds to the perturbative expansions in coupling constants
A in SPM and g in SLYM. This UV structure of the scaling function is also
supported by numerical analyses of sect. 4, where several first coefficients F, and
the radius of convergence are estimated. Note in this connection that the coeffi-
cient s(r) in the asymptotic expansion (3.15) is regular in G. Remainder coeffi-
cients s,(r), n =35,7,11,...are also regular.

4. Numerical work

Eq. (3.11) was solved by iterative numerical integration of the convolution ¢ * L,
€, =rcoshB+e=*L, (4.1)

starting from the initial value &,(8) =rcosh . The integration was replaced by
summation with the B-step 48 = 0.1. The iterative process is well convergent and
after 3—70 iterations (dependent on the value of r) one finishes with an e(B) with
14 significant digits accuracy. It was verified that the final (B) is unchanged under
the integration step decrease. Several patterns of L(f) are plotted in fig. 2.

{-0.04

Fig. 3. Scaling function F(r) and expansion coefficients ss(r) and s54(r) versus scaling length r.

i T
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9iz

12/5

Fig. 4. Perturbative part of scaling functions s,(r) versus G = r

The scaling function is plotted in fig. 3. The first two expansion coefficients in
eq. (3.15), ss(r) and s,(r), are also presented there. The r — 0 limiting values are
estimated as

55(0) = —1.13476515585... X 1072,

5,(0) = —3.56664913023 ... X 10 2. (4.2)

In fig. 4 the “perturbative part” of the scaling function s,(r) = F(r) — V3 r?/24
is plotted against G = r'*/°. Supposing this to be expandable in power series (3.32)
in G one can estimate several first expansion coefficients F, from numerical data
on F(r). The result for the first ten F,’s is presented in table 1. The accuracy of
these extracted numbers fall rapidly with the order number n. A few partial sums
of the perturbative series (3.32) are plotted in fig. 4 and show fast convergence for
|G| < 14 (note that this corresponds to ~ 3 correlation lengths).

To estimate the convergence region of the series (3.32) the values of F, listed in
table 1 for n > 1 were fitted by the formula

E, 1
= G—(1+a/n+0(1/n2)) (4.3)

=1 0
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TaBLE 1
Coefficients in the perturbative expansion (3.32) of the ground state scaling function
(numerical estimations)

X

&

n

—1.415365357153 X 102
1.3587274489 x 10~4
—4.75827523 x 10~ ¢
2.130038 x 10~7
—1.07141 x 10~8
5.7788 + 0.001 x 10710
—3.264 +0.003 x 10!
190 +001x10"12
111 +008x10"13
7 +3x10°15

[Sel e Je SN e LT T TR N .

P

-0.03
-0.02
-0.04
G
G - 151, 0 -10 _:;):\_\\_\ 0
N

Fig. 5. Truncated series (3.32) for negative G. Gy, is the estimated position of singularity.
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ition of singularity.
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corresponding to a singularity of the type
F~(G-Ggy) ' ™% (4.4)

Supposing the coefficients near the terms omitted in the 1/n expansion (4.3) to be
of order 1 one finds

Gy=—143 £0.4; a=—-13+03. (4.5)
The value of G, gives the position of singularity and determines the convergence

region of the series (3.32). In fig. 5, the truncated series (3.32) is presented for
negative G.

5. Perturbative calculations

Here we consider the scaling function from the point of view of perturbations in
the coupling constants A in SPM and g in SLYM. The perturbation theory for the
finite size effects in CFT perturbed by a relevant operator was studied in ref. [18].
In unperturbed CFT the circle hamiltonian and momentum are

21 _
H. = —(L0+Lo—'-

= R (Lo=Lo)- (5.1)

c 2
S

= =

The perturbative corrections to the ground state energy of SPM are given by the
series

E(pem__fL_R i (—/\)"
SPMET ISR D !

f(cD(Xl)...@(Xn)>cd2Xz...d2Xn, (5.2)

where X, =(x,y,) are points on the cylinder we considered above and the
connected correlation functions (...),, defined via the usual combinatorial pre-
scription, are calculated in CFT (at A = 0). We adopt the usual CFT normalization
of field @ (and hence the coupling constant A) by the relation

(@(X)P(0)) ~1X|™*, (5.3)
where 4 =2/5 in SPM. Using the conformal mapping z = exp(—2mi{/R), where

{ =x+iy is the complex coordinate on the cylinder, one can express integrals in
eq. (5.2) in terms of connected CFT correlation functions ((...)). on the infinite

I
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plane z df =2-7

¢ o (-—A)" Vi AA—1n+2
%)

E(pert]=_7r__R Z

6R n!

=]
X [((HO)B(2),7,) ... (2, in)V(WD}cfli(-’-jE:)A_]dgzz-..dzz,,,

(5.4)

where V is the CFT field corresponding to the cylinder unperturbed ground state
(V=T in the case of SPM).

In fact, in SPM due to CFT selection rules the series in (5.2) is over even powers
of the coupling A only. Since the perturbation dimension A.<1,/2, all the infegrals
in eq. (5.2) are UV convergent. On the cylinder they are also infrared convergent.

It follows from dimensional arguments that the expansion is in fact in the
dimensionless parameter A’R'?/ | ie.

Eer) — 2_'”'(_1/]5_'_ ({)AERIZ;".‘_‘_é) MRAUS & ) (5 5)
SPM' T R Z1 2 SR '

We suppose that this series converges in some finite region near A*R'*/“ =0,
Thermodynamic arguments require that as R — =

EEH~&(N)R, 180 (5.6)

the asymptotic corrections being exponentially small in the massive theory. This
quantity

@(JU(’\) :fuf'\sf3 (5:7)
is the singular part of the infinite volume bulk free energy caused by the
long-range fluctuations of the Potts model near criticality. In field theory

the vacuum energy is conventionally normalized to zero. Subtracting this from the
perturbative series (5.5) one has

Espm(R) =Efy' — &R. (5.8)

This leads to the following short-distance structure

2w
Espm(R) = =foBPR+ —(~1/15 + &R + &N R+ ...). (59)
TV R

This is exactly the structure we have found from the analyses of the TBA equation.
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(5.4)
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Therefore, from the perturbative point of view the term V3 r2/247 in the scaling
function is due to infrared divergent subtractions and should be attributed to the

singular infinite volume vacuum energy &,

V3
géSPM) == —6—mi = 6R§ 5 (510)
The behavior of &,~R;? is predicted by scaling. It is surprising that the
numerical factor can be so easily extracted from the TBA approach.
The perturbative series in SLYM is

. ™ = (-g)"
B e R
n=1 °

[(e(X)). (X)) &%, .4, . (51D)

With the same arguments as used above we find

ESLYM( R) = - @OO(SLYM)/\SHR
2
I 7(—1/30 + ffSLYM)gRu/S 4F eOZ(SLYM)ngz‘VS 3 ) (5.12)

As we know from the TBA analyses, when suitably normalized, this is the same
function as Egpy. In particular,

BV : (5.13)

128" 12R?

EEYM —

Also, the perturbative coefficients are the same up to the rescaling factor

A 2n " |
(m6/5) =2 ) 4028, (5.14)
B

A

where F, are expansion coefficients of the TBA ground state scaling function
(3.32). This permits us to estimate the mass scales of these two models in terms of
couplings by comparing the numerical results of sect. 4 with perturbative calcula-

tions.
The simplest is the first-order perturbation in SLYM. It is given by the ground

state expectation of the field ¢ in .#(2/5)

=245
(5.15)

(’Ol(SLYM) = o <<P>g=o-

As the ground state in this case corresponds to the primary state ¢, this expecta-
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tion value is determined by the .#(2/5) triple-¢ structure constant [16]

2qr\
{(p) = (?) Cope- ‘ 3 (5.16)

The latter can be extracted from the general expressions found in ref. {19]

I 3,2 1/2 .
Cooe = =¥(1/5)2y(2/5)" /> = (1.911312699. .. )i 5.17
eee g5 )
with y(x) =I'(x)/I'(1 ~ x). Therefore

S = (2) T7C, = (0.1458410994 ... )i

Comparing this with the value of F, quoted in table 1 we find

) — \
= {
g = (0.09704845636 ... )im12/5 . (5.18)

In particular, the coupling constant g in SLYM is imaginary with Im g > 0.
Note that the singularity discussed at the end of sect. 4 is located at negative
imaginary g.

In SPM the first correction is given by the following integral

kag \Ia-) R,2/5

LOPM) _
; ! 44

[(@(0)¢(X)>d2X. (5.19)

The ground state now corresponds to the identity operator and

a7 \2 1 /3
P(X)DP(0))=|{— = 5.20
(P(X)2(0)) [(R) sin(m{/R)sin(mw{/R) (5.20)
The integral in (5.19) can be calculated explicitly
2/5)%v(1/5
S = L”E/S/—) ~ —1.048590494 . .. | (5.21)
427)
sy cone,
By comparing with the relation (5.14) this leads to
A =(0.1643033129... ) m®/>. (5.22)

For confidence it is worth verifying relation (5.14) in the next order of the
SLYM perturbation theory. To order g? we find using the form (5.4) of the
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(5.16)
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)e (5.17)
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(5.20)
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perturbation expansion

1

L£OLYM)
: 2(27)""°

[y(z,z)(zz)‘ﬁ/5 d’z, (5.23)

where £ is the connected four-point correlation function of fields ¢ on infinite

plane

2(2,7) = ({p(=)p(1)e(z,2)e(0))). - (5.24)

It can be found explicitly in terms of hypergeometric functions (2, 16]
2 3 6 2 3 6
SN 5\2/5 \11/5 -
Aoty = (A -00-D (5. 3 505 oF 5 55 7)
2
5

1 2 4 1 4
+C2 ()11 -2)a - HF| = o o2 Pl s 502
(22) [( z)( z)} 215,575,2215, ’5,2-

Pop
(5.25)
Integral (5.23) was evaluated numerically with the result
[f(z, 5)(z2) %5 d%z = 2m(4.955511876...) . ~(5.26)
This gives
EPIYM = -1.442629784 ... X 1072 (5.27)

in good agreement with the value of F, quoted in table 1.

The author is grateful to A.B. Zamolodchikov for discussions on the subject
matter and interest in the work and to V. Yurov for valuable advice about the

numerical analyses.
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