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1. Twist Fields in QFT

Twist fields are nothing new in QFT. Whenever there is an
internal symmetry in QFT there generally is a symmetry
field (or twist field) associated to it.

A well-known example is the Ising model. Both as a minimal
model of CFT and as a massive QFT, the Ising model has
three fields 1, ε and µ generally known as the identiy, energy
and order fields.

The Ising model has Z2 symmetry and we can think of the
order field µ as a twist field.

As we saw earlier, this means that there is a non-trivial factor
of local commutativity ω = −1 associated with the field µ.

Twist fields are non-local w.r.t. other fields in the theory but
they are local w.r.t. the Lagrangian density of the theory (as
they respect the internal symmetry).

In this sense they are local fields and they can be studied as
such.
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2. Branch Point Twist Fields in QFT

It is known since a long time that a twist field may be associ-
ated to the Zn symmetry of an orbifolded CFT constructed
as n cyclicly connected copies of a given CFT. The conformal
dimension of such field T was also found in this context.

Twist Field Conformal Dimension
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In the investigation of the EE a field of the “same” dimension
was first identified by Calabrese and Cardy in 2004. In this
work, this field was interpreted as associated to a conical
singularity in the complex plane (see reference list).

In 2008 we proposed an interpretation of this field as branch
point twist field. In particular we showed that branch point
twist fields are local in a replica theory.

Olalla A. Castro-Alvaredo www.thebolognalectures.weebly.com



3. Exchange Relations in QFT

Let ϕ be a local field of a given QFT. Consider a replica
theory where n copies ϕi, i = 1, . . . , n exist and i+ n ≡ i.
Two Branch Point Twist Fields may be defined which are
characterized by the following commutation relations:

ϕi(y)T (x) = T (x)ϕi+1(y) x1 > y1,

ϕi(y)T (x) = T (x)ϕi(y) x1 < y1,

ϕi(y)T̃ (x) = T̃ (x)ϕi−1(y) x1 > y1,

ϕi(y)T̃ (x) = T̃ (x)ϕi(y) x1 < y1.

T implements the cyclic permutation symmetry i 7→ i + 1
and T̃ = T † implements the inverse map i 7→ i− 1.
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4. EE of one interval in CFT

We now have two ways of computing the EE of a single inter-
val in CFT: we may compute the partition function Zn on a
Riemann manifold with one branch cut or we may compute
a two-point function of twist fields.

Let us start by using the first approach. Recall that TrAρ
n
A =

Zn/Z
n
1 . Points on the complex plane ω can be mapped to

points z the n-sheeted Riemann manifold through the con-
formal map

z =

(
ω

ω − `

) 1
n

The points ω = 0 and ω = ` are conical singularities.

⇒
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5. Computing Zn Using Conformal Mapping

Let us map this configuration to a cylinder. The map that
achieves this is

σ = i log

(
`− ω + 2ε

`+ ω + 2ε

)
where we introduced a cut-off ε so as to avoid singularities.
In his set up the branch cut now runs vertically from σ = 0
to σ = i log `

ε (time direction) and has total length log `
ε .

⇒
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6. CFT on a Cylinder

CFT on the cylinder has particularly nice properties.
In particular, the Hamiltonian becomes simply L0 + L̄0− c

12
in terms of Virasoro generators and this will help us finally
evaluate the partition functions.

Zn = 〈e− log `
ε
Hrep〉, Zn1 = 〈e− log `

ε
H0〉n

where Hrep is the Hamiltonian in the replica theory and
H0 = L0 + L̄0− c

12 is the Hamiltonian of the original theory.
It is easy to evaluate Zn1 as we just need to know the lowest
eigenvalue of L0, L̄0. In terms of conformal maps we have
the same cylinder but without the branch cut.
In unitary theories, these eigenvalues are simply 0 but in
non-unitary theories we may have a non-vanishing lowest
eigenvalue ∆ = ∆̄ and so, in general:

Zn1 ∼ e−2n log `
ε
(∆− c

24
)

Computing Zn is a little harder.
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7. Orbifold Theories

The replica theory is what is what is usually called an orb-
ifold in CFT.

In this orbifold we can also construct a Virasoro algebra Lk
associated with central charge c and a stress-energy tensor
T (z) =

∑n
j=1 T

(j)(z) with T (j)(z + 2π) = T (j+1)(z).

The total Virasoro algebra is then a sub-algebra of Lk with
central charge nc whose generators can be defined as:

Lrep
k =

Lnk
n

+ ∆T δ0,k

The Hamiltonian is then

Hrep = Lrep
0 + L̄rep

0 − nc

12
.

This gives

Zn ∼ e−2 log `
ε
( ∆
n

+∆T −nc24
)
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8. Finally...

Thus we have that:

Replica Partition Function

TrAρ
n
A =

Zn
Zn1

=
(ε
`

) ceff
12 (n− 1

n)
with ceff = c− 24∆

From this expression one may easily derive the known for-
mulae for the von Neumann and the Rényi entropies:

S(`) =
ceff

6
log

`

ε
and Sn(`) =

ceff(n+ 1)

12n
log

`

ε

The extra factor 1/2 compared to previous formulae comes in
because there is only one boundary point (in the calculation
we assume the system starts at x = 0).
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9. EE from Branch Point Twist Fields

The same results can be obtained much more easily by em-
ploying branch point twist fields:

Partition Function as Correlator of Twist Fields

TrA(ρnA) ∝ ε4∆T 〈T (0)T̃ (`)〉.

In CFT (` � ξ) such representation indeed gives the ex-
pected formulae for the EE since:

ε4∆T 〈T (0)T̃ (`)〉 =
( ε
`

)4∆T
⇒ Sn(`) ∼ c(n+ 1)

6n
log

(
`

ε

)
A representation in terms of twist fields shows also satura-
tion for large distances (`� ξ):

lim
`→∞

ε4∆T 〈T (0)T̃ (`)〉 = ε4∆T 〈T 〉2 ⇒ Sn(`) ∼ c(n+ 1)

6n
log
( ε
m

)
+Un

Saturation follows from factorization of correlators at large

distances. Here 〈T 〉 = m2∆T an and Un = log(a2
n)

1−n .
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10. Final Observations

Note that our twist field results involve c instead of ceff .

This is because in non-unitary theories, where c 6= ceff an-
other type of twist field needs to be used.

We note that the twist field approach facilitates computa-
tions, even for the simplest case we have considered here.

In addition, it is really the only approach that we can use for
massive theories (where conformal invariance is broken) and
even for CFT if the Riemann manifold is more complicated.

For instance, for the LN:

E [n] = 〈T (0)T̃ (`1)T̃ (`2)T (`3)〉
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