Lecture 4: Twist Fields in Quantum Field Theory

Olalla A. Castro-Alvaredo

School of Mathematics, Computer Science and Engineering
Department of Mathematics
City, University of London

November 22, 2016

1. Twist Fields in QFT

- Twist fields are nothing new in QFT. Whenever there is an internal symmetry in QFT there generally is a symmetry field (or twist field) associated to it.
- A well-known example is the Ising model. Both as a minimal model of CFT and as a massive QFT, the Ising model has three fields $1, \epsilon$ and μ generally known as the identiy, energy and order fields.
- The Ising model has \mathbb{Z}_{2} symmetry and we can think of the order field μ as a twist field.
- As we saw earlier, this means that there is a non-trivial factor of local commutativity $\omega=-1$ associated with the field μ.
- Twist fields are non-local w.r.t. other fields in the theory but they are local w.r.t. the Lagrangian density of the theory (as they respect the internal symmetry).
- In this sense they are local fields and they can be studied as such.

2. Branch Point Twist Fields in QFT

- It is known since a long time that a twist field may be associated to the \mathbb{Z}_{n} symmetry of an orbifolded CFT constructed as n cyclicly connected copies of a given CFT. The conformal dimension of such field \mathcal{T} was also found in this context.

Twist Field Conformal Dimension

$$
\Delta_{\mathcal{T}}=\frac{c}{24}\left(n-\frac{1}{n}\right), \quad \Delta_{: \mathcal{T} \phi:}=\frac{c_{\mathrm{eff}}}{24}\left(n-\frac{1}{n}\right) \quad(\text { non }- \text { unitary })
$$

- In the investigation of the EE a field of the "same" dimension was first identified by Calabrese and Cardy in 2004. In this work, this field was interpreted as associated to a conical singularity in the complex plane (see reference list).
- In 2008 we proposed an interpretation of this field as branch point twist field. In particular we showed that branch point twist fields are local in a replica theory.

3. Exchange Relations in QFT

- Let φ be a local field of a given QFT. Consider a replica theory where n copies $\varphi_{i}, i=1, \ldots, n$ exist and $i+n \equiv i$.
- Two Branch Point Twist Fields may be defined which are characterized by the following commutation relations:

$$
\begin{array}{rlr}
\varphi_{i}(y) \mathcal{T}(x)=\mathcal{T}(x) \varphi_{i+1}(y) & x^{1}>y^{1} \\
\varphi_{i}(y) \mathcal{T}(x) & =\mathcal{T}(x) \varphi_{i}(y) & x^{1}<y^{1} \\
\varphi_{i}(y) \tilde{\mathcal{T}}(x) & =\tilde{\mathcal{T}}(x) \varphi_{i-1}(y) & x^{1}>y^{1} \\
\varphi_{i}(y) \tilde{\mathcal{T}}(x) & =\tilde{\mathcal{T}}(x) \varphi_{i}(y) & x^{1}<y^{1}
\end{array}
$$

- \mathcal{T} implements the cyclic permutation symmetry $i \mapsto i+1$ and $\tilde{\mathcal{T}}=\mathcal{T}^{\dagger}$ implements the inverse map $i \mapsto i-1$.

4. EE of one interval in CFT

- We now have two ways of computing the EE of a single interval in CFT: we may compute the partition function Z_{n} on a Riemann manifold with one branch cut or we may compute a two-point function of twist fields.
- Let us start by using the first approach. Recall that $\operatorname{Tr}_{\mathcal{A}} \rho_{A}^{n}=$ Z_{n} / Z_{1}^{n}. Points on the complex plane ω can be mapped to points z the n-sheeted Riemann manifold through the conformal map

$$
z=\left(\frac{\omega}{\omega-\ell}\right)^{\frac{1}{n}}
$$

The points $\omega=0$ and $\omega=\ell$ are conical singularities.

5. Computing Z_{n} Using Conformal Mapping

- Let us map this configuration to a cylinder. The map that achieves this is

$$
\sigma=i \log \left(\frac{\ell-\omega+2 \epsilon}{\ell+\omega+2 \epsilon}\right)
$$

where we introduced a cut-off ϵ so as to avoid singularities. In his set up the branch cut now runs vertically from $\sigma=0$ to $\sigma=i \log \frac{\ell}{\epsilon}$ (time direction) and has total length $\log \frac{\ell}{\epsilon}$.

6. CFT on a Cylinder

- CFT on the cylinder has particularly nice properties.
- In particular, the Hamiltonian becomes simply $L_{0}+\bar{L}_{0}-\frac{c}{12}$ in terms of Virasoro generators and this will help us finally evaluate the partition functions.

$$
Z_{n}=\left\langle e^{-\log \frac{\ell}{\epsilon} H_{\mathrm{rep}}}\right\rangle, \quad Z_{1}^{n}=\left\langle e^{-\log \frac{\ell}{\epsilon} H_{0}}\right\rangle^{n}
$$

where $H_{\text {rep }}$ is the Hamiltonian in the replica theory and $H_{0}=L_{0}+\bar{L}_{0}-\frac{c}{12}$ is the Hamiltonian of the original theory.

- It is easy to evaluate Z_{1}^{n} as we just need to know the lowest eigenvalue of L_{0}, \bar{L}_{0}. In terms of conformal maps we have the same cylinder but without the branch cut.
- In unitary theories, these eigenvalues are simply 0 but in non-unitary theories we may have a non-vanishing lowest eigenvalue $\Delta=\bar{\Delta}$ and so, in general:

$$
Z_{1}^{n} \sim e^{-2 n \log \frac{\ell}{\epsilon}\left(\Delta-\frac{c}{24}\right)}
$$

- Computing Z_{n} is a little harder.
- The replica theory is what is what is usually called an orbifold in CFT.
- In this orbifold we can also construct a Virasoro algebra \mathcal{L}_{k} associated with central charge c and a stress-energy tensor $T(z)=\sum_{j=1}^{n} T^{(j)}(z)$ with $T^{(j)}(z+2 \pi)=T^{(j+1)}(z)$.
- The total Virasoro algebra is then a sub-algebra of \mathcal{L}_{k} with central charge $n c$ whose generators can be defined as:

$$
L_{k}^{\mathrm{rep}}=\frac{\mathcal{L}_{n k}}{n}+\Delta_{\mathcal{T}} \delta_{0, k}
$$

- The Hamiltonian is then

$$
H^{\mathrm{rep}}=L_{0}^{\mathrm{rep}}+\bar{L}_{0}^{\mathrm{rep}}-\frac{n c}{12}
$$

- This gives

$$
Z_{n} \sim e^{-2 \log \frac{\ell}{\epsilon}\left(\frac{\Delta}{n}+\Delta_{\mathcal{T}}-\frac{n c}{24}\right)}
$$

- Thus we have that:

Replica Partition Function

$$
\operatorname{Tr}_{\mathcal{A}} \rho_{A}^{n}=\frac{Z_{n}}{Z_{1}^{n}}=\left(\frac{\epsilon}{\ell}\right)^{\frac{c_{\mathrm{eff}}}{12}\left(n-\frac{1}{n}\right)} \quad \text { with } \quad c_{\mathrm{eff}}=c-24 \Delta
$$

- From this expression one may easily derive the known formulae for the von Neumann and the Rényi entropies:

$$
S(\ell)=\frac{c_{\mathrm{eff}}}{6} \log \frac{\ell}{\epsilon} \quad \text { and } \quad S_{n}(\ell)=\frac{c_{\mathrm{eff}}(n+1)}{12 n} \log \frac{\ell}{\epsilon}
$$

- The extra factor $1 / 2$ compared to previous formulae comes in because there is only one boundary point (in the calculation we assume the system starts at $x=0$).

9. EE from Branch Point Twist Fields

- The same results can be obtained much more easily by employing branch point twist fields:

Partition Function as Correlator of Twist Fields

$$
\operatorname{Tr}_{\mathcal{A}}\left(\rho_{A}^{n}\right) \propto \epsilon^{4 \Delta_{\mathcal{T}}}\langle\mathcal{T}(0) \tilde{\mathcal{T}}(\ell)\rangle
$$

- In CFT $(\ell \ll \xi)$ such representation indeed gives the expected formulae for the EE since:

$$
\epsilon^{4 \Delta_{\mathcal{T}}}\langle\mathcal{T}(0) \tilde{\mathcal{T}}(\ell)\rangle=\left(\frac{\epsilon}{\ell}\right)^{4 \Delta_{\mathcal{T}}} \Rightarrow S_{n}(\ell) \sim \frac{c(n+1)}{6 n} \log \left(\frac{\ell}{\epsilon}\right)
$$

- A representation in terms of twist fields shows also saturation for large distances $(\ell \gg \xi)$:

$$
\lim _{\ell \rightarrow \infty} \epsilon^{4 \Delta_{\mathcal{T}}}\langle\mathcal{T}(0) \tilde{\mathcal{T}}(\ell)\rangle=\epsilon^{4 \Delta_{\mathcal{T}}}\langle\mathcal{T}\rangle^{2} \Rightarrow S_{n}(\ell) \sim \frac{c(n+1)}{6 n} \log \left(\frac{\epsilon}{m}\right)+U_{n}
$$

- Saturation follows from factorization of correlators at large distances. Here $\langle\mathcal{T}\rangle=m^{2 \Delta_{\mathcal{T}}} a_{n}$ and $U_{n}=\frac{\log \left(a_{n}^{2}\right)}{1-n}$.

10. Final Observations

- Note that our twist field results involve c instead of $c_{\text {eff }}$.
- This is because in non-unitary theories, where $c \neq c_{\text {eff }}$ another type of twist field needs to be used.
- We note that the twist field approach facilitates computations, even for the simplest case we have considered here.
- In addition, it is really the only approach that we can use for massive theories (where conformal invariance is broken) and even for CFT if the Riemann manifold is more complicated.
- For instance, for the LN:

$$
\mathcal{E}[n]=\left\langle\mathcal{T}(0) \tilde{\mathcal{T}}\left(\ell_{1}\right) \tilde{\mathcal{T}}\left(\ell_{2}\right) \mathcal{T}\left(\ell_{3}\right)\right\rangle
$$

