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The structure of the UV singularity in the two-point correlation function is considered fi
the scaling Lee-Yang model. Both perturbative and nonperturbative corrections to UV confc
mal theory are discussed. The IR convergent perturbation theory for the structure functions
operator algebra is developed and the first-order corrections are calculated explicitly. The U
expansion is compared numerically with the results of partial summation over intermedia
asymptotic states. These two expansions match well in the intermediate region and give
reasonable precision data for the correlation function in the whole region of scaling distance

1. Introduction

The conformal field theory (CFT) [1-3], being the theory of renormalizatio
group fixed point, provides us (among other applications) with the classification ¢
possible ultraviolet (UV) behavior in general relativistic field theory (RFT). Be
cause of extremely high symmetry, CFT models are typically exactly solvable an
today we have an enormous number of explicit constructions (see e.g. refs. [1-11]
From this point of view in approach to general RFT it is natural to begin with th.
short-distance CFT and consider the corresponding renormalization group trajec
tory as a perturbation of CFT model by a suitable relevant (or marginal) scala
operator (see e.g. refs. [12-20], where this approach was applied to different 2L
problems). As a starting point one usually takes the conventional action

\_mﬂnmnﬂLn%\SAkvaNk, (1.1

where the scalar CFT field ¢(x) has dimension A(=24) < 1. The coupling constan
g develops positive scale dimension g ~ (mass)?~24 for A < 1 and becomes dimen-
sionless in the marginal case 4 = 1. The last case must correspond to asymptoti-
cally free renormalization group behavior to make sense in the picture under
consideration.
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natural to expect that perturbation theory in g works well m:‘:m UV limit,
providing us with a systematic short-distance expansion of observables. Consider,
for example, the perturbative expansion of a particular RFT correlation function,
say the two-point one,

AGAMVGAOVYNEJ :.Nv

where @ is some local field. For simplicity it is supposed to be scalar. One may try
the following formal expansion:

- (-g)"
(@B ner= T [ B)BO(r) . o(5,)yerr dPy... 2,

nog Nl
(1.3)

where the correlation functions in the right-hand side are calculated in CFT and
&(x) is the corresponding UV limit of the field ®(x). However, when attempting
to calculate the integrals in the r.h.s. of (1.3), one readily encounters both infrared
(IR) and UV divergencies. The latter can be handled by standard renormaliza-
tion techniques and lead to renormalizations of local fields and, in the marginal
case 4 =1, of the coupling constant. The marginal situation seems much more
complicated for analyses and in what follows we only consider strictly relevant
perturbations 4 < 1. Moreover we suppose that A < 1/2 to avoid completely any
renormalizations in the interaction hamiltonian.

As for the IR divergencies, they cannot be absorbed into any local entities of the
theory and lead to known non-analyticity in the coupling constant. In this paper we
try to handle these nonperturbative corrections. The point of view is the following.
To estimate UV behavior of e.g. the two-point function (1.2), we start with the
local operator product expansion (OPE)

D(x)P(0) = 3 Chy(x) A,(0), (1.4)

wvhere A(0), 1 =0,1,... is the complete set of local fields in the theory and
Caalx) are the corresponding structure functions. 1t is natural to expect that these
juantities, being local, do not develop any non-analyticity and have regular
:xpansions in the coupling constant g. More strictly we suppose that the basis
4,(0), i =0,1,... in the space of local fields .27 can always be chosen so that all the
structure functions are analytic in g.

The basic fields 4,(0) are considered as perturbations of the corresponding

icale covariant CFT fields A,(0). Denoting the dimensions of these CFT fields as

B R T T e e UV S SV SN -

(4, 4,), we :mé.,_a dimensional arguments

X
, || _ \I . — o n N
M?VA\«V “\«b.,lwhsk.b‘ 244 MU QM%WVAWWN va , AFMV

n=0

where r=(x¥)!/? is the scalar distance. The price we have to pay for the
analyticity of the structure functions is nonzero vacuum expectation values (VEVs)
of some of the fields A,. These values are of course of nonlocal nature and may be
non-analytic. Indeed, again for dimensional reasons,

(4 =g/i-0g,, (16)

where the Q, are dimensionless numbers. The set of VEVs (A, i=0,1,... isa
characteristic of large-distance environment of our local OPE world. We call it the
outvacuum (outvac) vector (as opposed to local invacuum (invac) vector /, i.e. the
identity operator). All the non-analyticity is absorbed into the outvac vector.

Of course, the majority of the VEVs (A4, is zero due to RFT symmetries. First,
the VEVs of the fields with nonzero spin vanish. Secondly, all the fields which are
spatial derivatives of other ones do the same. And at last many RFT models
exhibit additional symmetries generated by an infinite set of commuting integrals
of motion [14,15,17-24). These are so-called integrable models. In this case every
field, which can be generated by action of any integral of motion, cannot develop
nonzero VEV. Finally we are left with the factor space P, spanned by “primary”
(with respect to spatial differentiation and the higher symmetries) scalar fields A4,
v=01...

Selecting these “primary” fields in the r.h.s. of eq. (1.4), we obtain

(P(x)P(0)) gy = MQ&SA\«X\A,\V. (1.7)

In this paper we try this construction for a presumably simplest interacting
RFT - the scaling Lee-Yang model (SLYM) [25]. From the UV point of view
SLYM corresponds to unique perturbation of the minimal CFT model A(2/5)
(19,26]. As a test laboratory the example chosen has many advantages.

(i) The corresponding CFT space of states is very simple and includes only two
primary fields [1,26]. These are the identity operator / and the scalar field ¢ of
negative dimension 4 = —1/5. SLYM corresponds to perturbation of .#(2/5)
exactly by this operator. Therefore it is safe to keep for this field the same notation
as for the perturbation field in eq. (1.1). The coupling constant is purely imaginary,

\AmrisH\A.\\B\r+§\ﬁﬁkvawa< (18

where /4 ~ (mass)'2/%.

o



@2 ALB. Zamolodchikov / Correlation function .

(") As it was demonstrated in ref. [19], SLYM is integrable and massive RFT. Its
on-mass-shell spectrum consists of a single massive neutral particle A of mass m.
The scattering theory is factorized with the following two-particle amplitude [19]:

sinh B8 + isin 37 D> <2
Saa(B) = = — ” _ (1.9)
sinh 8 —isin 37 =~r> <22

The pole at B =2im/3 in §,,(B) is interpreted as a bound state corresponding to
fusion, AA— A — AA. The wrong sign in the residue signals the absence of
unitarity in the SLYM scattering theory.

(iif) Additional information is provided by the thermodynamic Bethe ansatz
(TBA) approach [27]. What will be important for us is the VEV of the stress tensor
trace @ = ;T*,

(O)=—mrm?/4/3 . (1.10)

(iv) In what follows we also use the relation between the coupling 4 and the
mass scale m of the theory,

h =10.09704845636 ... x m'?/3 (1.11)

found in ref. [27] by numerical integration of the thermodynamic Yang-Yang
equation for SLYM.

In sect. 2 the above general arguments are specified for the two-point correla-
tion G(r) of the stress tensor trace ®@(x) in SLYM. Using a zero-order approxima-
tion for the relevant structure functions, we are able to develop a UV expansion up
to order o(r'*/%). In this calculation the exact VEV of @ is used essentially.

In sect. 3 the IR-convergent perturbation theory for the OPE structure functions
is formulated and the first-order corrections are evaluated. This gives an estima-
tion of the correlation function G(r) up to order o(r?/%). Further development of
the perturbation theory makes no sense. At the order O(r?/%) the next “primary”
operator (namely :77:) begins to contribute to the correlation function. Up to now
I hardly know how to find this VEV (and also VEVs of higher “primary”
operators) exactly.

Integrability of the model allows one to compare the obtained UV expansion
with an alternative set of data. Inserting a complete set of asymptotic states
between two operators in the correlation function (@(x)@(0)), one obtains an
opposite, large-distance expansion in the number of intermediate particles. To
calculate the expansion terms one needs matrix elements of the operator @(x)
between asymptotic states (form factors). A systematic way of recovering these
quantities in integrable theories from the factorized scattering data was developed
in refs. [28-37]. In ref. [38] it was proposed to use the exact form factors to study
numerically correlation functions in integrable RFT models. In sect. 4 the scatter-
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ing theory (1.9) is used to construct the whole set of @(x) form factors. These form
factors were obtained also from the sine-Gordon ones in ref. [37], where it was
shown that SLYM can be constructed by eliminating solitons from the asymptotic
space of the sine-Gordon model with special coupling.

Using the exact form factors we calculate numerically zero-, one-, two- and
three-particle contributions to the correlation function G(r). This leads to a set of
data precise enough up to r ~ 0.01 m~'. Direct comparison of the data provided by
the short- and large-distance cxpansions is possible duc to relation (1.11). 1t shows
that thesc two scts of data match well in the intermediate region 0.01m™' <r<
LO0m ' providing us with a reasonable precision numerical estimation of G(r) in
the whole region of scaling distances mr.

2. Two-point correlation in SLYM; short-distance expansion

The simplest nontrivial correlation in SLYM [apart from the VEV (1.10)] is that
of two CFT primary fields ¢(x). We suggest here that the local fields in the
perturbed theory are in one-to-one correspondence with that of the short-distance
CFT [18]. In order not to invent new designations we keep the CFT notations for
them. It will be seen below that in perturbation theory these fields in general differ
from their CFT counterparts in infinite additive renormalizations.

We start with the unperturbed CFT .#(2/5), where OPE of two fields ¢(x) has
the form

4

r e
e(x)@(0) =r*3 I + o7 T7:(0) + o(r'?)
\;f_
+ & o(0) + T35 7 (0 + 00y | (2.1)

Here r=(x%)'/? and in the r.h:s. we only keep scalar nonderivative (conformal)
operators. The conformal field F(0) is defined as

F(0) = (L_s = LY NIy — BI%,)e(0). (2.2)

The structure constant Copp N #(2/5) was calculated in refs. [4,5.26]. 1t is
purely imaginary and we denote €y =LKk to deal with the real number

xHNf\u\wﬁvi\wﬁmvuH.o:ﬁwmoo.:v (2.3)

where the abbreviation y(x) = I'(x)/I'(1 — x) was used.
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The corresponding OPE in SLYM differs from (2.1) in structur¢ functions,
ach are no more simple powers,

@(x)@(0) = CL(r) 1+ CL(r)p(0) + CIT(r):TT:(0) +.... (2.4)

wing in mind to take VEV we again omit here all derivatives and operators with
nZero spin.

Following the line suggested above we suppose regular perturbative expansions
r the structure functions,

Cooolr)

s

1+ Qfr+ 02+ .. ), L

Il

Ceo(r) =C, (1 + Qf1 + Q817+ ...),

msﬂ:;%xﬁimwtﬁ;, 3.3
1ere ¢ is the dimensionless coupling constant ¢ = Ar'?/>. The next term omitted in
|- (2.4) is the renormalized version of the CFT operator (2.2). It is of order
#%2/5 The expansions in (2.5) are supposed to be convergent in a finite region
ound ¢ = 0.

The field o(x) is purely imaginary. It is therefore more convenient to use
stead the stress tensor trace @(x), which is related to ¢(x) as follows:

O(x) =thm(l-24)e(x), (2.6)
here A = —1/5 is the dimension of the field ¢. For the corresponding two-point
inction

G(r) =(O(x)6(0)) (2.7)

e therefore find

G(r)=—m(1 =4 h2CL(r) +im(1 = A)hCE(r)(O)

~ w3 (1= A RCIT () CTTD + . (2.8)

‘he outvac is supposed to be normalized so that (/) = 1. Substituting for (@} the
alue (1.10) and zero-order terms for the structure functions O?QV and C¢,(r), we
ind up to order r'4/3,

m2(1 = A) hkm?

254 O(r!%). (29
e r (r'*2y. (2.9

G(ry= -1 Ibvwxwl\m +
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G(r)

0 5 1 1.5 2 2.5 3
mr

Fig. 1. Two-point function G (in units m™) versus scaling distance mr. Dolted line: zero-order

short-distance expansion (2.9). Full line: the same corrected by first-order perturbative terms in

structure functions {egs. (3.22) and (3.27)). Full circl arge-distance expansion with up to three-
particle contributions included.

It turns out that due to nonzero VEV of the field ¢(x) the two-point correlation
function G(r) behaves for small r not as r*/5, as one could expect naively from
CFT arguments, but rather as r?/°. The competition of the two terms quoted in eq.
(2.9) results in the curve drawn in fig. 1 in the “physical” mass scale, i.e. in units of
m~". The relation (1.11) was used for this rescaling.

The next subleading terms of orders r'*% and r'*® come from the first-order
perturbative corrections to the structure functions O,MGCQ and C¢ (r). These
corrections are calculated in sect. 3 where the IR-convergent perturbation theory
for structure functions is settled.

To obtain {urther we need the VEV of the next field :77:. Now it is not clear,
however, how this value can be calculated exactly. In any case it is seen in fig. 1
that the zero-order terms we have taken into account in eq. (2.9) already give a
reasonable match with the large-distance expansion data (see sect. 4 below).

3. Perturbation theory for structure functions

The OPE structure functions are purely local characteristics of RFT and
therefore do not carry any information on large-distance environment. In particu-
lar they know nothing about the situation near spatial infinity and cannot suffer
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from IR divergencies. In fact in perturbation theory all the integrals contributing
to the structure functions can be restricted inside a circle of radius r.

When constructing the perturbation theory for local fields one encounters the
problem of their UV renormalization. To differ unrenormalized fields from renor-
malized ones, in this section we denote the perturbative CFT fields as A, to save
the notation A, for their renormalized counterparts. For simplicity we suppose
also that 4 <1/2 to get rid of renormalizations in the interaction hamiltonian and
consider the structure functions in the r.h.s. of eq. (1.4) with fields @ of low
enough dimension, so that they require no renormalization.

Consider first the following matrix:

IF(g, R, e) = (A* () \A‘\onvmzi

% - ,vz B ~
= M AI%‘\.& A\A»Aoo:wﬂv:v...Sﬁ\fvhkovvnﬂqamf...QNXN_

n=0 n! .V_.vs._Vm

(3.1)

where the CFT field A* is placed to infinity. This insertion plays the role of
external boundary condition. In eq. (3.1) all the integrations are restricted between
the UV cut-off € and the IR cut-off R. Therefore under the suppositions listed
above all the integrals are finite and /*(g, R,e) are regular in the coupling
constant g. With the standard CFT normalization of fields,

If(g.R,e) =8f+0(g). (3.2)

Rotational symmetry of the geometry chosen ensures the matrix /*(g, R, ¢) to be
diagonal in the spin of the fields. It is therefore possible to consider each spin
sector in &7 separately. Although it is not very essential, to simplify notation in this
section we only treat the spin-zero sector and imply that indices k,/,... numerate
scalar fields only.

The matrix elements /f(g, R, €) are typically singular as € — 0. In the limit this
singular dependence can be decoupled,

@»A%Mbvmvu MQ\%A%,mvN\A.A%,%vu Awwv
PR

where 1}(g, R) are renormalized matrix elements and Uk(g, €) is the UV cut-off
dependent renormalization matrix. Both are regular expansions in the coupling g.

. ALB. Zamolodchikor / Correlation Sfunction ¢

From dimensional arguments

20 Q»T:A%mwlwbv:
k o !
Q\ A%“MV| M mNAD\Ib»V . Aw

n=0

As the limit € — 0 is implied, in the series (3.4) we should only keep terms wi
negative powers of e. Since we suppose 4 <1 this means that there is only a fini
number of terms in each matrix eclement. Morcover, it is clear that if the ficlds
arc arranged in order of increasing dimension 4y<4,<4,... then U h
triangular form, i.e.

Uk(g,€) =0 if 4> 4,. (3.¢

Obviously the inverse matrix (U~')¥ has the same properties (3.4) and (3.5
Define the renormalized perturbative fields as

A= M”AQLVM.\WT (3.¢
/

It is natural to keep the following normalization:

Ul(g,e) =8f+0(g). (3.7
This means that every renormalized field has the form
A=A+ ..., (38

where a finite number of terms with operators of lower than 4, dimension ar
omitted in the r.h.s. of eq. (3.8).

The situation becomes somewhat more complicated if any two dimensions diffe
in integer number of “quanta” 1 -4, say 4, —4,=n(1 — 4), with some positiv
integer n(nth order resonance condition). In this case logarithmic divergence
show up in perturbation theory and the splitting in eq. (3.3) becomes ambiguous
depending on an arbitrary normalization point. In the first-order calculations o
this section we shall not encounter any difficulties of this kind.

The renormalized matrix elements

If(8, R) = (A* () A4,(0) )R (3.9)

are indenendent on the TTV reanlarizatinn « at lanee mambeealonstoot. L. 1 ,
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ime dimensional structure as (3.4), .

« biiﬁmxwxwuv:
I/(g,R)= L TRE&-Io (3.10)

n=0

ut now we must keep all the terms with positive powers of R. Summation of the
:ries (3.10) leads to nontrivial functions of R. For general arguments, however,
ey behave in a sense homogeneously. This means in particular that the limits

\\,.A%v \Nv
lm ——ete = g M/ = (k) (3.11)
Row N%A%‘\Nv !
«ist and in general are nothing but the outvac components (1.6). (Of course,
oundary conditions at infinity can always be tuned so as to exclude the outvac

ontribution. In this case they are components of another out-vector.)
Define also the following set of quantities:

(8,2, R) = (A* () D(x)P(0))

¥
n! «\.z

) PO .
>y,

1s we supposed no renormalizations of @, all the integrals are UV convergent and
‘e need no e. Substituting eq. (1.4) for the product @(x)P(0) we obtain formally

Cho(x) = ¥ Ghalg, x, RY(17") (g, R) . (3.13)
!

Ve expect that the expression in the r.is, is IR finite, ie. the limit R — o exists
nd provides a set of finite structure functions for the renormalized fields A,.
Consider the first perturbative order. Let &€, €5, and <€) be the CFT
lructure constants,

(xx) 7 3egh = (AN () P(x)D(0) derr,

Il

(xx)™ -f?u%s»s (A* () (x)D(0))err,

:mv#»klp%s@n (A* () o(x) A,(0)Deer . (3.14)

With these :oﬁm:..osw finds to first order

RAA—4=a+1) eXdx—-a+ 1l

Tk — 8§k _ g 2k . 3.15
IF(g,R,e) =08/ —gmty, A —a -4+l ( )

Therefore to this order

W.ﬂ.%ﬂ“\muﬁb»lb\lb+:
1¥(g,R) =8F— 5
a ! A, -4, —A+]

mﬂ‘ﬂw»\mﬁ.:xkiu+ B

A, -4 -4+

Q\»A%,mvnm\».*‘ Aw._ov

To first order in g the structure function (3.13) becomes

Cho(x) = €lp(xt)™ 2 =g (A(2)e(y)@(x)P(0))cer d’y

R>\y!

.N%SN»\NNNAL»lPIb+ 1)
DbP o

Ag—A—A+1

ey (3.17)
(

Eq. (3.17) implies that there is no first-order resonance between A, and any 4,. It
is clear however how to handle the resonance situation. ‘

Substituting OPE (1.4) into the correlation function in the second term of the
r.h.s. of eq. (3.17) (this is allowed if |y| >r), one readily observes that the effect of
the last term is just to cancel all possible IR divergences. In the absence of
first-order resonances we find

¢ L2 24 ok . b2y
ﬁ,\w:\.Akv Sl 2 Copgp T 8T

3 ol ok
> .%h\é.w\,b o ey +0(g?)
X \ A, —4,-A+1 A —Ad, -4+
(3.18)

Under our conventions about the dimensions of the fields ¢ and & Sa.wa_.?xf in
the r.h.s. is convergent. Otherwise it may diverge and require Em:.—.ﬂ:.ﬁ_ﬁ:_c.:.

The series in eq. (3.18) is not very useful for practical S_n:_m:c:m., It _w;.Bo?.
convenient to evaluate the first-order correction to the structure function Chal)
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-

as an integral,

CHR(r) = =g [ (A (=) 0(») B(x) D(0) ey 7y,

(3.19)

throwing away a finite number of IR divergences. This prescription is indicated by
the prime on the integral symbol. In the absence of logarithmic divergences it is
equivalent to treat the integral (3.19) as an analytic continuation in field dimen-
sions. In the first-order SLYM calculations of this section we shall not meet any

logarithms, so this recipe is suitable.
Turn to SLYM. We have .

CL(r) = =ih [ (@(¥)e(x)@(0) ey d2y.

This integral can be calculated exactly,

w65 TY2(1/5)
14%y(2/5)

CID(r) = xhr

=0.167324465 ... X xhr'6/5

(3.20)

(3.21)

‘ig. 2. Effect of the first-order corrections to structure functions. Dotted line: zero-order short-

distance expansion. Full line: first-order corrected one. Full circles: large-distance data.
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or, using the relation (1.11),
s 12/5 4/
Cl,=r"5(1+0.0310370062... x (mr) "> + O(r2/%)). (3.22)
The second correction we need is
Ce = —ih [ (p(=)o(y)@(x)@(0))cpr dy. (3.23)
TaBLE |
Comparison of short- and large-distance expansions and combined data for
the correlation function G(r)/m*
Large-distance expansion Short-distance expansion
0-1-2 0-1-2-3 Zeroth-order First-order Combined
mr particles particles terms correction data
3.000 0.2040233 0.2040233 0.1697161 0.1758804 0.2040233
2.500 0.2027576 0.2027576 0.1788572 0.1884556 0.2027576
2.000 0.2003961 0.2003961 0.1853433 0.1940464 0.2003961
1.800 0.1989299 0.1989299 0.1869155 0.1945682 0.1989299
1.600 0.1970086 0.1970086 0.1877183 0.1941230 0.1970086
1.400 0.1944661 0.1944661 0.1875673 0.1926431 0.1944661
1.200 0.1910576 0.1910576 0.1862015 0,1899715 0.1910576
1.000 0.1864078 1.1864077 0.1832322 0.1858092 1.186408
0.900 0.1834404 0.1834403 1.1809665 0.1830129 0.183440
0.800 0.1799050 0.1799048 0.1780400 0.1796096 0.179905
0.700 0.1756495 0.1756491 0.1743008 0.1754536 0.175649
0.600 0.1704590 0.1704582 0.1695355 0.1703357 0.170458
0.500 0.1640154 0.1640135 0.1634279 0.1639424 0.16401
0.400 0.1558148 0.1558101 0.1554771 0.1557732 0.15581
0.300 0.1449798 0.1449668 0.1448076 0.1449507 0.14497
0.280 0.1423682 0.1423519 0.1422188 0.1423387 0.14235
0.260 0.1395661 0.1395455 0.1394357 0.1395348 0.13955
0.240 0.1365479 0.1365217 - 0.1364325 0.1365132 0.13652
0.220 0.1332825 (.1332486 0.1331776 0.1332420 0,13325
0.200 0.1297308 0.1296865 0.1296313 0.1296815 0.12969
0.180 0.1258437 0.1257848 0.1257430 0.1257812 0.12579
0.160 0.1215570 0.1214773 0.1214468 0.1214748 0.12148
0.140 0.1167853 0.1166749 0.1166537 0.1166734 0.11668
0.120 0.1114102 0.1112529 0.1112392 0.1112523 0.11125
0.100 0.1052609 0.1050281 0.1050205 0.1050285 0.10503
0.080 0.0980749 0.0977121 0.0977096 0.0977140 0.09771
0.060 0.0894156 0.0888049 0.0888080 0.0888101 0.08881
0.040 0.0784624 0.0772925 0.0773067 0.0773074 0.07731
0.020 0.0633631 0.0603923 0.0604579 0.0604581 0.060458
0.010 0.0530335 0.0466724 0.0468928 0.0468929 0.046893
0.005 0.0475695 0.0355529 0.0361551 0.0361552 0.0361552
0.002 0.0478688 0.0236712 0.0254715 0.0254715 0.0254715
0.001 0.0537990 0.0158697 0.0194741 0.0194741 0.0194741
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With the explicit expression for the CFT four-point correlation T.moz [4,5,26] it
becomes

Coth = LE_N_;\N?,MZW (3.24)
where
#(2,2) = (2)°[(1 -2)(1 - D)]'°F(},3,4,2)F(3.3.4.2)
—k3(22)'°[(1-2)(1-2)]"°F(3.4,4,2)F(3.3.4,2). (3.29)
The integral was calculated ::Bm.zom:vf

CeO(r) = 0.133084702... X imrhr'4/5 (3.26)

Therefore

CE(r) = €,por?/3(1+0.021229262... X (mr)'* + O(r¥*/%)). (3.27)

P

Substituting the corrected structure functions into the expansion (2.7) we obtain
an estimation of the function G(r) up to order o(r?*/°). The corrected curve is
plotted in fig. 1. One can observe in figs. 1 and 2 that in the interval 0.4 <mr < 1.3
the correction significantly improves the agreement with the large-distance data
(see also table 1). The latter are considered in sect. 4.

4. Exact form factors in SLYM; large-distance expansion

In ref. [38] it was proposed to study numerically the correlation functions in 2D
integrable models starting from cxact form factors of local fields. Consider for
simplicity a massive RFT with only one species of massive particles in the
asymptotic scattering space (this is just the case in SLYM). The asymptotic states
are specified by the number of particles n and a set of their rapidities 8, 8,,..., B,
The last are convenient to parameterize the on-mass-shell two-momenta (e,, p;) of
the particles,

¢, =mcosh §,, p,=msinh B, (4.1)

where m is their mass. Denoting the corresponding in- and out-states as
1B, B, inouny ONE can write down the following representation for any two-point

noin_m:os.ﬂozo: of local fields @: .

dg,...dg, in
AGAkveAC M\\ 3__AM4~.V A<NO_GAHV,.®_,....E:VS Amﬁ T : QUAOV_<

(4

The euclidean version of RFT is implied here (imaginary time x"). Also
suppose the following invariant normalization of one-particle states:

(BIBY =2m(B—B"). (4

We can always apply a Lorentz rotation to set x' =0, x"=(xx)"/? =r. For
geometry eq. (4.2) reads

Qm_ Qm: m
(P(x)P(0)) = M\i (vacl®(O)By,- - Budin (Bis-- - Byl P(0)lvac
Xexp| —mr W cosh B3, |. (4

(=1
Therefore the n-particle term in this expression behaves as e """
power-like factor and for r large the correlation function is saturated by the low
number of particle terms. We expect this series to be well convergent at least
large distances r. For a simple example of spin-spin Ising correlation function t
convergence was tested numerically in ref. [38]. The same program is applied he
to the two-point ®-correlation in SLYM.

In integrable RFT matrix elements (vac|®OIB,,...,B,),, (called the fur
factors) can in many cases be constructed exactly (see refs. [39- 41] for i
is the vacuum state (without particles) of scatteri
theory. In a series of papers [28-37] a system of bootstrap conditions for
multiparticle form factors was proposed, which provides a systematic way of the
reconstruction starting from factorized scattering data. We apply this system
recover the form factors

up tc

F (B, ... B,) = (vaclO(0)IB,.... B, {43

in SLYM. The functions F,(8,, ..., 8,) are meromorphic functions in cach variah
B,. They become ““physical” matrix elements {4.5) if all B,'s are real and ordered
B,>pB,> ... >pB,. For opposite ordering B; <, < ... < B, they are conjugal
matrix elements "(B,,...,,[0(0)|vac). The bootstrap conditions far this ¢



6% AlLB. Zamolodchikov / Correlation function '

v
read as follows:

(1) Fu(BrissBrBisis s Ba)=S(B, = Bis )F(Brr . Biu1 i Byveo s B) s (4.6)
where S(B) is two-particle amplitude (1.9).

(i) FA(B +A,....B,+A)=F(B.....8,) (4.7)
(iii) F.(By+2mi, By, B,) =F(By.- ... B,.By) (4.8)
(iv) As a function of relative rapidities B, =B,—B,, with {<j, the function
F.(B,,...,B,) exhibits only simple poles in the strip 0 < Im B, < 7. These are

located at B;;=im (kinematic poles) and B,, = 2im/3 (bound-state poles). The
corresponding residues are

l:wmm.um\w~+wﬁm_+;.,mim,__..;.m:vH I - :m:wlmb F(By..-..B,)

(=1

(4.9)
and
—iresg_g Fyir(B + 3im, B - T B Bay) =TF(B.Bi.....B,-)). (4.10)

where

r=j2'/231/4 (4.11)

is the on-mass-shell three-particle vertex. Up to a sign it can be recovered from the
scattering amplitude (1.9),

—iresg_yin 2 S(B)=T7. (4.12)

The vertex is imaginary in SLYM due to the wrong sign in the bound-state pole.
The last two conditions are specific for the operator @. They permit to find the
overall normalization of the functions F,(8,,...,8,) and presumably to recon-
struct all of them unambiguously.
(v) Interpretation of @ as a stress tensor component requires

Fy(B+im,B) = 3mm?. (4.13)
(vi) The stress tensor conservation

T+30 =0, dT+dO=0, (4.14)
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where T and T are the left- and right-stress tensor components, allows one to stat

vaclT(0)IB,,....B, 2 eP =F.(B,....8,) X e ®,

=] =1

Enis_m_..;m:vm e P =F (B nB) X e (4.15

i=1 =]

The T and T form factors defined here have the same singularity structurc as the
& form factors F(B,.....8,). This mcans that for n>?2 cvery  functiorn
FB,,...,B,) is dividable by the corresponding invariant total energy—momenturr
without acquiring additional singularities.

To reconstruct the whole set of form factors F, we start with the two-particle
one. Consider the following system of functional equations:

f(B)=fQ2im=B),  f(B)=S(B)f(-B). (4.16]

The relevant meromorphic solution exhibits a single pole in the strip 0 < Im 8 <7
at B =2im/3 and a single zero there at 8 =0,

cosh B -1

Imvuoom:mi\m

v(im=B)v( ~im+B), (4.17)

where v(B) is free of poles and zeroes in the half-plane Im 8> 0 and can be
defined as the following infinite product:

n

= | (B/2im+n+3)(B/2im+n— ) (B/2im+n— 1)

= 4.18
v(B) m_ (B/2im+n—3)(B/2im +n+3)(B/2im+n+ 1) (4.18)
An integral representation is also possible,
= d¢sinh 5t sinh 3¢ sinh 3¢
= 2 - e/ 4.19
v(B) =exp \o tsinh? ¢t © (4.19)

For numerical calculations (see below) the following mixed representation is most
convenient:

n

) B/2im+n—3)(B/2im+n—1)
WB/2im+n+ ) {(B/2im+n+ .3_

v(B) =TI

zAm\N:l:i
a=i| (B/2im+n—1

X exp N\ (N+1-Ne g 2N+ibi/m )  (420)

3 1 3 1 G 1
» dt sinh 5 sinh 5¢ sinh z¢ g
0 tsinh?¢ /



The integral here may be expanded in 1 /N up to the required 9’. The function
H(B) satisfies important relations,

L sinh B
HB) (B +im) = sinh B —isin 37’
. .y coshp+1/2
1B+ 3im)f(B = $im) = ——= L= (B). (421)

Taking into account the normalization condition (4.13) we state

Tm? \Am_ ~B3)

Fy(B1,B;) =

4.22
2 flim) E22))
Note that F,(B,, 8,) tends to a finite limit as B, (or B,) = o,
Substituting the multiparticle function F, in the form
f(B:-B;)
\u.:Am_v...gm:Vu: : \N:A.mw_u...um:v“ A&va

i<j cosh 3(B, - B,)

one readily observes that R,(8,,...,8,) are symmetric and 2imr-periodic in all 8,’s
entire functions. Under the requirement

F(Bi---B,) =0(1) asp,—>w (4.24)

(this seems natural for the form factors of the most “elementary” scalar field @)
the multiparticle form factors F, can be represented as

F(By--sB) =H,T] EP?:.:}Y (4.25)

i<y R.nT.k.\

where x,=ef i=1,... n,

"

ﬂ.SN w_\a
Hi= =757 272,00) (4.26)

and Q,(x,,...,x,) are symmetric polynomials in all n variables x of total degree
n(n —1)/2 and of degree n — 1 in each variable Xi

L SV IV RV B R TR TPy - o

~

It mo:oém‘a the residue conditions (4.9) and (4.10) that the polynomi#!
0,(x,..., x,) satisfy two recurrence relations. The first comes from eq. (4.9),

Al.v:Q:.TNA\«_Q...«\«:V\’P |\4v ”XND:A\«?..;k:vQ:A\«_k_....,\«:V‘ AbN.ﬂ

where (with the notation w =¢e'™/?)

! M\_AA\«JrE\fX\«lSu_\ﬁv

m\:ﬁk_k_v..;\«:v = i =1

- EAxiskvAx._.E-_\«_v

=1

n- kosin(2k + 1+ 1) in

— M \«N:IN»IN MU
k=0 =0

— 00201y, (428
sin 37

where o/(x,,...,x,) are elementary symmetric polynomials,

TT(x+x)=Yx"* 0 (x,,...,x,)- (4.2¢
k

= |

The second is a consequence of the bound-state residue (4.10),

=0
D:ﬁ?«t:.i«:.&xyﬁc kv

=0, (x), x,,x). (4.3C
M (37 x) o
One readily finds
Q,=1, Q,=0(x,,x,). (4.31
The stress tensor conservation (4.14) restricts polynomials Q,(x,,..., x,) wit

n > 2 to have the form
Q:A\«_q...«\«: ”q_A\A_.:..\ﬁ:vQ-:l_Ak_q.,.v.«:v\u:A\/.T...q.«:vq Abwm

where P(x,,...,x,) are again symmetric polynomials of total degree n(n —3)/
and of degree n — 3 in each variable. The recurrence relations (4.28) and (4.3(
become

AIv:+_\U:+NA\<_,..J\«:.ky|\«v

il

Q:A.K_\«_«...qk.:vwzﬂxﬂ_w...v.ﬂ.:vu Abwm

mu

1

(XX, wx, 0 )

:AH+R~vﬁz+%kf..._R:,\«v. Abwm
=1
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these it is easy to find

Pi=1,
Pi=oy(xy..xy),
Pi=o0,(x),...,x5)0(x) ..., x5) —as(x,,..., xs). (4.35)

The system of functional relations (4.33) and (4.34) turns out to be compatible and
seems to have a unique solution. This was checked up to P,. It can also be verified
that the following general expression:

P(x,,...,x,) =det X, (4.36)
where ¥ is (n — 3) X (n — 3) matrix with the entries

M:,HQBIN?LAX_,..J\«L, Ab.wd

0 05 0Oy Oy
1 oy o4 oy
=10 o o 9o,

0 0 o, o5

for n >3 provides a solution to the system (4.33) and (4.34). It seems natural to
consider this solution as a complete set of exact @ form factors in SLYM. It is
interesting to note that substituting formally n =0 and Q,=1 in eq. (4.25) one
recovers exactly the vacuum expectation value (1.10), .

Fy=(0). (4.38)

In terms of the form factors found the two-point @ correlation reads, according

to eq. (4.4), .t
[ E/

m: n
FBis s Ba) F(By, .. By)expl —mr ), cosh B,

i=1

dg,...d

n!i( Nﬂ,

G(r) = M \
(4.39)

The purely imaginary three-particle vertex (4.11) manifests itself in negative
contributions of the odd number of particle terms. This results in alternating series
and causes very fast convergence. The first four terms (i.e. zero-, one-, two- and
three-particle contributions) were calculated numerically, using the following ex-
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plicit expressions for the corresponding form factors:

P Tm?
cllf\wl ’
_ imrm?
R VMR
mm? [(B;)
Fy(By,B,) = 5 Alcwlmumiv
\.. i3V4rm? 3 1
3(B1B2B3) = q\wv_ 0) m.x v g . (4.40

The numerical results are shown in figs. 1-3. One can see extremely fast conver
gence in the region mr > 0.001 (this is illustrated in fig. 3). With only a few term
taken into account we get rather precise data for mr > 0.01. Comparing these witl
the results of the short-distance expansion (see fig. 2), we observe a good matcl

G(r)

Fig. 3. Convergence of the large-distance expansion for small mr. Empty triangles: zero- and one-
particle contributions. Empty circles: the same plus two-particle term. Full circles: up to three-particle
state contributions. Full curve: the short-distance data.
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inside a sufficiently wide region 0.01 < mr < 1.00. Sewing Homaﬁrainmn two sets of
data we find the combined estimation for all distances, listed in table 1.

5. Conclusions

(i) When developing perturbation theory around the UV conformal limit it is
convenient to accumuiate non-analytic contributions into a set of numbers (outvac
components). Then analytic corrections are separated into OPE structure func-
tions and can be calculated systematically. The exact calculation of VEVs in
integrable RFT remains an open problem.

(i1) If negative dimension operators are present in CFT, the perturbed correla-
tion functions may differ in their UV asymptotic form from naive CFT predictions.
Note that negative dimension perturbation not necessarily leads to non-unitary
RFT, but may preserve unitarity. This is exactly what happens in the sinh-Gordon
model, where CFT of a massless scalar field ¢ is perturbed by the primary
operator cosh(B¢) of negative dimension 4 = — 2. Corresponding massive RFT
is obviously unitary and the two-point function {e#%)eB4®) pehaves as r~*4’ in
the UV limit (rather than ~ r**’ as predicted by CFT) due to nonzero VEV of the
next negative dimension operator e?#?.

(iii) Correlation functions in integrable massive RFT models can be evaluated

numerically using corresponding exact form factors. In some cases this may help to
understand the off-mass-shell physics.

I am grateful to V.A. Fateev, C. Itzykson and A.B. Zamolodchikov for interest-

ing discussions. The hospitality of SISSA, where the work was finished, is also
greatly acknowledged.
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